| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = xO -> ( x x.s 1s ) = ( xO x.s 1s ) )  | 
						
						
							| 2 | 
							
								
							 | 
							id | 
							 |-  ( x = xO -> x = xO )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqeq12d | 
							 |-  ( x = xO -> ( ( x x.s 1s ) = x <-> ( xO x.s 1s ) = xO ) )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = A -> ( x x.s 1s ) = ( A x.s 1s ) )  | 
						
						
							| 5 | 
							
								
							 | 
							id | 
							 |-  ( x = A -> x = A )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqeq12d | 
							 |-  ( x = A -> ( ( x x.s 1s ) = x <-> ( A x.s 1s ) = A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							1sno | 
							 |-  1s e. No  | 
						
						
							| 8 | 
							
								
							 | 
							mulsval | 
							 |-  ( ( x e. No /\ 1s e. No ) -> ( x x.s 1s ) = ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) ) | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpan2 | 
							 |-  ( x e. No -> ( x x.s 1s ) = ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( x x.s 1s ) = ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) ) | 
						
						
							| 11 | 
							
								
							 | 
							elun1 | 
							 |-  ( p e. ( _Left ` x ) -> p e. ( ( _Left ` x ) u. ( _Right ` x ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq1 | 
							 |-  ( xO = p -> ( xO x.s 1s ) = ( p x.s 1s ) )  | 
						
						
							| 13 | 
							
								
							 | 
							id | 
							 |-  ( xO = p -> xO = p )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqeq12d | 
							 |-  ( xO = p -> ( ( xO x.s 1s ) = xO <-> ( p x.s 1s ) = p ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rspcva | 
							 |-  ( ( p e. ( ( _Left ` x ) u. ( _Right ` x ) ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( p x.s 1s ) = p )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							sylan | 
							 |-  ( ( p e. ( _Left ` x ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( p x.s 1s ) = p )  | 
						
						
							| 17 | 
							
								16
							 | 
							ancoms | 
							 |-  ( ( A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO /\ p e. ( _Left ` x ) ) -> ( p x.s 1s ) = p )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantll | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p x.s 1s ) = p )  | 
						
						
							| 19 | 
							
								
							 | 
							muls01 | 
							 |-  ( x e. No -> ( x x.s 0s ) = 0s )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( x x.s 0s ) = 0s )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( x x.s 0s ) = 0s )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							oveq12d | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( p x.s 1s ) +s ( x x.s 0s ) ) = ( p +s 0s ) )  | 
						
						
							| 23 | 
							
								
							 | 
							leftssno | 
							 |-  ( _Left ` x ) C_ No  | 
						
						
							| 24 | 
							
								23
							 | 
							sseli | 
							 |-  ( p e. ( _Left ` x ) -> p e. No )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> p e. No )  | 
						
						
							| 26 | 
							
								25
							 | 
							addsridd | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p +s 0s ) = p )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							eqtrd | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( p x.s 1s ) +s ( x x.s 0s ) ) = p )  | 
						
						
							| 28 | 
							
								
							 | 
							muls01 | 
							 |-  ( p e. No -> ( p x.s 0s ) = 0s )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							syl | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p x.s 0s ) = 0s )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							oveq12d | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) = ( p -s 0s ) )  | 
						
						
							| 31 | 
							
								
							 | 
							subsid1 | 
							 |-  ( p e. No -> ( p -s 0s ) = p )  | 
						
						
							| 32 | 
							
								25 31
							 | 
							syl | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p -s 0s ) = p )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							eqtrd | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) = p )  | 
						
						
							| 34 | 
							
								33
							 | 
							eqeq2d | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) <-> a = p ) )  | 
						
						
							| 35 | 
							
								
							 | 
							equcom | 
							 |-  ( a = p <-> p = a )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							bitrdi | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) <-> p = a ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							rexbidva | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. p e. ( _Left ` x ) a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) <-> E. p e. ( _Left ` x ) p = a ) )  | 
						
						
							| 38 | 
							
								
							 | 
							left1s | 
							 |-  ( _Left ` 1s ) = { 0s } | 
						
						
							| 39 | 
							
								38
							 | 
							rexeqi | 
							 |-  ( E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> E. q e. { 0s } a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) ) | 
						
						
							| 40 | 
							
								
							 | 
							0sno | 
							 |-  0s e. No  | 
						
						
							| 41 | 
							
								40
							 | 
							elexi | 
							 |-  0s e. _V  | 
						
						
							| 42 | 
							
								
							 | 
							oveq2 | 
							 |-  ( q = 0s -> ( x x.s q ) = ( x x.s 0s ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq2d | 
							 |-  ( q = 0s -> ( ( p x.s 1s ) +s ( x x.s q ) ) = ( ( p x.s 1s ) +s ( x x.s 0s ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							oveq2 | 
							 |-  ( q = 0s -> ( p x.s q ) = ( p x.s 0s ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							oveq12d | 
							 |-  ( q = 0s -> ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							eqeq2d | 
							 |-  ( q = 0s -> ( a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) ) )  | 
						
						
							| 47 | 
							
								41 46
							 | 
							rexsn | 
							 |-  ( E. q e. { 0s } a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) ) | 
						
						
							| 48 | 
							
								39 47
							 | 
							bitri | 
							 |-  ( E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							rexbii | 
							 |-  ( E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> E. p e. ( _Left ` x ) a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							risset | 
							 |-  ( a e. ( _Left ` x ) <-> E. p e. ( _Left ` x ) p = a )  | 
						
						
							| 51 | 
							
								37 49 50
							 | 
							3bitr4g | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a e. ( _Left ` x ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							eqabcdv | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } = ( _Left ` x ) ) | 
						
						
							| 53 | 
							
								
							 | 
							rex0 | 
							 |-  -. E. s e. (/) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) )  | 
						
						
							| 54 | 
							
								
							 | 
							right1s | 
							 |-  ( _Right ` 1s ) = (/)  | 
						
						
							| 55 | 
							
								54
							 | 
							rexeqi | 
							 |-  ( E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) <-> E. s e. (/) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) )  | 
						
						
							| 56 | 
							
								53 55
							 | 
							mtbir | 
							 |-  -. E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							a1i | 
							 |-  ( r e. ( _Right ` x ) -> -. E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							nrex | 
							 |-  -. E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							abf | 
							 |-  { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } = (/) | 
						
						
							| 60 | 
							
								59
							 | 
							a1i | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } = (/) ) | 
						
						
							| 61 | 
							
								52 60
							 | 
							uneq12d | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) = ( ( _Left ` x ) u. (/) ) ) | 
						
						
							| 62 | 
							
								
							 | 
							un0 | 
							 |-  ( ( _Left ` x ) u. (/) ) = ( _Left ` x )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							eqtrdi | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) = ( _Left ` x ) ) | 
						
						
							| 64 | 
							
								
							 | 
							rex0 | 
							 |-  -. E. u e. (/) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) )  | 
						
						
							| 65 | 
							
								54
							 | 
							rexeqi | 
							 |-  ( E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) <-> E. u e. (/) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							mtbir | 
							 |-  -. E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							a1i | 
							 |-  ( t e. ( _Left ` x ) -> -. E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							nrex | 
							 |-  -. E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							abf | 
							 |-  { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } = (/) | 
						
						
							| 70 | 
							
								69
							 | 
							a1i | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } = (/) ) | 
						
						
							| 71 | 
							
								
							 | 
							elun2 | 
							 |-  ( v e. ( _Right ` x ) -> v e. ( ( _Left ` x ) u. ( _Right ` x ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							oveq1 | 
							 |-  ( xO = v -> ( xO x.s 1s ) = ( v x.s 1s ) )  | 
						
						
							| 73 | 
							
								
							 | 
							id | 
							 |-  ( xO = v -> xO = v )  | 
						
						
							| 74 | 
							
								72 73
							 | 
							eqeq12d | 
							 |-  ( xO = v -> ( ( xO x.s 1s ) = xO <-> ( v x.s 1s ) = v ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							rspcva | 
							 |-  ( ( v e. ( ( _Left ` x ) u. ( _Right ` x ) ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( v x.s 1s ) = v )  | 
						
						
							| 76 | 
							
								71 75
							 | 
							sylan | 
							 |-  ( ( v e. ( _Right ` x ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( v x.s 1s ) = v )  | 
						
						
							| 77 | 
							
								76
							 | 
							ancoms | 
							 |-  ( ( A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO /\ v e. ( _Right ` x ) ) -> ( v x.s 1s ) = v )  | 
						
						
							| 78 | 
							
								77
							 | 
							adantll | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v x.s 1s ) = v )  | 
						
						
							| 79 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( x x.s 0s ) = 0s )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							oveq12d | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( v x.s 1s ) +s ( x x.s 0s ) ) = ( v +s 0s ) )  | 
						
						
							| 81 | 
							
								
							 | 
							rightssno | 
							 |-  ( _Right ` x ) C_ No  | 
						
						
							| 82 | 
							
								81
							 | 
							sseli | 
							 |-  ( v e. ( _Right ` x ) -> v e. No )  | 
						
						
							| 83 | 
							
								82
							 | 
							adantl | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> v e. No )  | 
						
						
							| 84 | 
							
								83
							 | 
							addsridd | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v +s 0s ) = v )  | 
						
						
							| 85 | 
							
								80 84
							 | 
							eqtrd | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( v x.s 1s ) +s ( x x.s 0s ) ) = v )  | 
						
						
							| 86 | 
							
								
							 | 
							muls01 | 
							 |-  ( v e. No -> ( v x.s 0s ) = 0s )  | 
						
						
							| 87 | 
							
								83 86
							 | 
							syl | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v x.s 0s ) = 0s )  | 
						
						
							| 88 | 
							
								85 87
							 | 
							oveq12d | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) = ( v -s 0s ) )  | 
						
						
							| 89 | 
							
								
							 | 
							subsid1 | 
							 |-  ( v e. No -> ( v -s 0s ) = v )  | 
						
						
							| 90 | 
							
								83 89
							 | 
							syl | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v -s 0s ) = v )  | 
						
						
							| 91 | 
							
								88 90
							 | 
							eqtrd | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) = v )  | 
						
						
							| 92 | 
							
								91
							 | 
							eqeq2d | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) <-> d = v ) )  | 
						
						
							| 93 | 
							
								38
							 | 
							rexeqi | 
							 |-  ( E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> E. w e. { 0s } d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) ) | 
						
						
							| 94 | 
							
								
							 | 
							oveq2 | 
							 |-  ( w = 0s -> ( x x.s w ) = ( x x.s 0s ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							oveq2d | 
							 |-  ( w = 0s -> ( ( v x.s 1s ) +s ( x x.s w ) ) = ( ( v x.s 1s ) +s ( x x.s 0s ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							oveq2 | 
							 |-  ( w = 0s -> ( v x.s w ) = ( v x.s 0s ) )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							oveq12d | 
							 |-  ( w = 0s -> ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							eqeq2d | 
							 |-  ( w = 0s -> ( d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) ) )  | 
						
						
							| 99 | 
							
								41 98
							 | 
							rexsn | 
							 |-  ( E. w e. { 0s } d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) ) | 
						
						
							| 100 | 
							
								93 99
							 | 
							bitri | 
							 |-  ( E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							equcom | 
							 |-  ( v = d <-> d = v )  | 
						
						
							| 102 | 
							
								92 100 101
							 | 
							3bitr4g | 
							 |-  ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> v = d ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							rexbidva | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> E. v e. ( _Right ` x ) v = d ) )  | 
						
						
							| 104 | 
							
								
							 | 
							risset | 
							 |-  ( d e. ( _Right ` x ) <-> E. v e. ( _Right ` x ) v = d )  | 
						
						
							| 105 | 
							
								103 104
							 | 
							bitr4di | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d e. ( _Right ` x ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							eqabcdv | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } = ( _Right ` x ) ) | 
						
						
							| 107 | 
							
								70 106
							 | 
							uneq12d | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) = ( (/) u. ( _Right ` x ) ) ) | 
						
						
							| 108 | 
							
								
							 | 
							0un | 
							 |-  ( (/) u. ( _Right ` x ) ) = ( _Right ` x )  | 
						
						
							| 109 | 
							
								107 108
							 | 
							eqtrdi | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) = ( _Right ` x ) ) | 
						
						
							| 110 | 
							
								63 109
							 | 
							oveq12d | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) = ( ( _Left ` x ) |s ( _Right ` x ) ) ) | 
						
						
							| 111 | 
							
								
							 | 
							lrcut | 
							 |-  ( x e. No -> ( ( _Left ` x ) |s ( _Right ` x ) ) = x )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantr | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( ( _Left ` x ) |s ( _Right ` x ) ) = x )  | 
						
						
							| 113 | 
							
								10 110 112
							 | 
							3eqtrd | 
							 |-  ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( x x.s 1s ) = x )  | 
						
						
							| 114 | 
							
								113
							 | 
							ex | 
							 |-  ( x e. No -> ( A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO -> ( x x.s 1s ) = x ) )  | 
						
						
							| 115 | 
							
								3 6 114
							 | 
							noinds | 
							 |-  ( A e. No -> ( A x.s 1s ) = A )  |