Metamath Proof Explorer


Theorem mulsrmo

Description: There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019)

Ref Expression
Assertion mulsrmo
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) )

Proof

Step Hyp Ref Expression
1 enrer
 |-  ~R Er ( P. X. P. )
2 1 a1i
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ~R Er ( P. X. P. ) )
3 prsrlem1
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) )
4 mulcmpblnr
 |-  ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) -> ( ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ~R <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ) )
5 4 imp
 |-  ( ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ~R <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. )
6 3 5 syl
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ~R <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. )
7 2 6 erthi
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R )
8 7 adantrlr
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R )
9 8 adantrrr
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R )
10 simprlr
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R )
11 simprrr
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R )
12 9 10 11 3eqtr4d
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> z = q )
13 12 expr
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> ( ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) )
14 13 exlimdvv
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> ( E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) )
15 14 exlimdvv
 |-  ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) )
16 15 ex
 |-  ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) )
17 16 exlimdvv
 |-  ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) )
18 17 exlimdvv
 |-  ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) )
19 18 impd
 |-  ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) )
20 19 alrimivv
 |-  ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) )
21 opeq12
 |-  ( ( w = s /\ v = f ) -> <. w , v >. = <. s , f >. )
22 21 eceq1d
 |-  ( ( w = s /\ v = f ) -> [ <. w , v >. ] ~R = [ <. s , f >. ] ~R )
23 22 eqeq2d
 |-  ( ( w = s /\ v = f ) -> ( A = [ <. w , v >. ] ~R <-> A = [ <. s , f >. ] ~R ) )
24 23 anbi1d
 |-  ( ( w = s /\ v = f ) -> ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) <-> ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) ) )
25 simpl
 |-  ( ( w = s /\ v = f ) -> w = s )
26 25 oveq1d
 |-  ( ( w = s /\ v = f ) -> ( w .P. u ) = ( s .P. u ) )
27 simpr
 |-  ( ( w = s /\ v = f ) -> v = f )
28 27 oveq1d
 |-  ( ( w = s /\ v = f ) -> ( v .P. t ) = ( f .P. t ) )
29 26 28 oveq12d
 |-  ( ( w = s /\ v = f ) -> ( ( w .P. u ) +P. ( v .P. t ) ) = ( ( s .P. u ) +P. ( f .P. t ) ) )
30 25 oveq1d
 |-  ( ( w = s /\ v = f ) -> ( w .P. t ) = ( s .P. t ) )
31 27 oveq1d
 |-  ( ( w = s /\ v = f ) -> ( v .P. u ) = ( f .P. u ) )
32 30 31 oveq12d
 |-  ( ( w = s /\ v = f ) -> ( ( w .P. t ) +P. ( v .P. u ) ) = ( ( s .P. t ) +P. ( f .P. u ) ) )
33 29 32 opeq12d
 |-  ( ( w = s /\ v = f ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. = <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. )
34 33 eceq1d
 |-  ( ( w = s /\ v = f ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R )
35 34 eqeq2d
 |-  ( ( w = s /\ v = f ) -> ( q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R ) )
36 24 35 anbi12d
 |-  ( ( w = s /\ v = f ) -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R ) ) )
37 opeq12
 |-  ( ( u = g /\ t = h ) -> <. u , t >. = <. g , h >. )
38 37 eceq1d
 |-  ( ( u = g /\ t = h ) -> [ <. u , t >. ] ~R = [ <. g , h >. ] ~R )
39 38 eqeq2d
 |-  ( ( u = g /\ t = h ) -> ( B = [ <. u , t >. ] ~R <-> B = [ <. g , h >. ] ~R ) )
40 39 anbi2d
 |-  ( ( u = g /\ t = h ) -> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) <-> ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) )
41 simpl
 |-  ( ( u = g /\ t = h ) -> u = g )
42 41 oveq2d
 |-  ( ( u = g /\ t = h ) -> ( s .P. u ) = ( s .P. g ) )
43 simpr
 |-  ( ( u = g /\ t = h ) -> t = h )
44 43 oveq2d
 |-  ( ( u = g /\ t = h ) -> ( f .P. t ) = ( f .P. h ) )
45 42 44 oveq12d
 |-  ( ( u = g /\ t = h ) -> ( ( s .P. u ) +P. ( f .P. t ) ) = ( ( s .P. g ) +P. ( f .P. h ) ) )
46 43 oveq2d
 |-  ( ( u = g /\ t = h ) -> ( s .P. t ) = ( s .P. h ) )
47 41 oveq2d
 |-  ( ( u = g /\ t = h ) -> ( f .P. u ) = ( f .P. g ) )
48 46 47 oveq12d
 |-  ( ( u = g /\ t = h ) -> ( ( s .P. t ) +P. ( f .P. u ) ) = ( ( s .P. h ) +P. ( f .P. g ) ) )
49 45 48 opeq12d
 |-  ( ( u = g /\ t = h ) -> <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. = <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. )
50 49 eceq1d
 |-  ( ( u = g /\ t = h ) -> [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R )
51 50 eqeq2d
 |-  ( ( u = g /\ t = h ) -> ( q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R <-> q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) )
52 40 51 anbi12d
 |-  ( ( u = g /\ t = h ) -> ( ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R ) <-> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) )
53 36 52 cbvex4vw
 |-  ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) )
54 53 anbi2i
 |-  ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) <-> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) )
55 54 imbi1i
 |-  ( ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) <-> ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) )
56 55 2albii
 |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) <-> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) )
57 20 56 sylibr
 |-  ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) )
58 eqeq1
 |-  ( z = q -> ( z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) )
59 58 anbi2d
 |-  ( z = q -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
60 59 4exbidv
 |-  ( z = q -> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) )
61 60 mo4
 |-  ( E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) )
62 57 61 sylibr
 |-  ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) )