Step |
Hyp |
Ref |
Expression |
1 |
|
enrer |
|- ~R Er ( P. X. P. ) |
2 |
1
|
a1i |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ~R Er ( P. X. P. ) ) |
3 |
|
prsrlem1 |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) ) |
4 |
|
mulcmpblnr |
|- ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) -> ( ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ~R <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ) ) |
5 |
4
|
imp |
|- ( ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ~R <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ) |
6 |
3 5
|
syl |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ~R <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ) |
7 |
2 6
|
erthi |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) |
8 |
7
|
adantrlr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) |
9 |
8
|
adantrrr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) |
10 |
|
simprlr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) |
11 |
|
simprrr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) |
12 |
9 10 11
|
3eqtr4d |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) -> z = q ) |
13 |
12
|
expr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> ( ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) |
14 |
13
|
exlimdvv |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> ( E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) |
15 |
14
|
exlimdvv |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) |
16 |
15
|
ex |
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) ) |
17 |
16
|
exlimdvv |
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) ) |
18 |
17
|
exlimdvv |
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) -> z = q ) ) ) |
19 |
18
|
impd |
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) ) |
20 |
19
|
alrimivv |
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) ) |
21 |
|
opeq12 |
|- ( ( w = s /\ v = f ) -> <. w , v >. = <. s , f >. ) |
22 |
21
|
eceq1d |
|- ( ( w = s /\ v = f ) -> [ <. w , v >. ] ~R = [ <. s , f >. ] ~R ) |
23 |
22
|
eqeq2d |
|- ( ( w = s /\ v = f ) -> ( A = [ <. w , v >. ] ~R <-> A = [ <. s , f >. ] ~R ) ) |
24 |
23
|
anbi1d |
|- ( ( w = s /\ v = f ) -> ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) <-> ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) ) ) |
25 |
|
simpl |
|- ( ( w = s /\ v = f ) -> w = s ) |
26 |
25
|
oveq1d |
|- ( ( w = s /\ v = f ) -> ( w .P. u ) = ( s .P. u ) ) |
27 |
|
simpr |
|- ( ( w = s /\ v = f ) -> v = f ) |
28 |
27
|
oveq1d |
|- ( ( w = s /\ v = f ) -> ( v .P. t ) = ( f .P. t ) ) |
29 |
26 28
|
oveq12d |
|- ( ( w = s /\ v = f ) -> ( ( w .P. u ) +P. ( v .P. t ) ) = ( ( s .P. u ) +P. ( f .P. t ) ) ) |
30 |
25
|
oveq1d |
|- ( ( w = s /\ v = f ) -> ( w .P. t ) = ( s .P. t ) ) |
31 |
27
|
oveq1d |
|- ( ( w = s /\ v = f ) -> ( v .P. u ) = ( f .P. u ) ) |
32 |
30 31
|
oveq12d |
|- ( ( w = s /\ v = f ) -> ( ( w .P. t ) +P. ( v .P. u ) ) = ( ( s .P. t ) +P. ( f .P. u ) ) ) |
33 |
29 32
|
opeq12d |
|- ( ( w = s /\ v = f ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. = <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ) |
34 |
33
|
eceq1d |
|- ( ( w = s /\ v = f ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R ) |
35 |
34
|
eqeq2d |
|- ( ( w = s /\ v = f ) -> ( q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R ) ) |
36 |
24 35
|
anbi12d |
|- ( ( w = s /\ v = f ) -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R ) ) ) |
37 |
|
opeq12 |
|- ( ( u = g /\ t = h ) -> <. u , t >. = <. g , h >. ) |
38 |
37
|
eceq1d |
|- ( ( u = g /\ t = h ) -> [ <. u , t >. ] ~R = [ <. g , h >. ] ~R ) |
39 |
38
|
eqeq2d |
|- ( ( u = g /\ t = h ) -> ( B = [ <. u , t >. ] ~R <-> B = [ <. g , h >. ] ~R ) ) |
40 |
39
|
anbi2d |
|- ( ( u = g /\ t = h ) -> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) <-> ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) |
41 |
|
simpl |
|- ( ( u = g /\ t = h ) -> u = g ) |
42 |
41
|
oveq2d |
|- ( ( u = g /\ t = h ) -> ( s .P. u ) = ( s .P. g ) ) |
43 |
|
simpr |
|- ( ( u = g /\ t = h ) -> t = h ) |
44 |
43
|
oveq2d |
|- ( ( u = g /\ t = h ) -> ( f .P. t ) = ( f .P. h ) ) |
45 |
42 44
|
oveq12d |
|- ( ( u = g /\ t = h ) -> ( ( s .P. u ) +P. ( f .P. t ) ) = ( ( s .P. g ) +P. ( f .P. h ) ) ) |
46 |
43
|
oveq2d |
|- ( ( u = g /\ t = h ) -> ( s .P. t ) = ( s .P. h ) ) |
47 |
41
|
oveq2d |
|- ( ( u = g /\ t = h ) -> ( f .P. u ) = ( f .P. g ) ) |
48 |
46 47
|
oveq12d |
|- ( ( u = g /\ t = h ) -> ( ( s .P. t ) +P. ( f .P. u ) ) = ( ( s .P. h ) +P. ( f .P. g ) ) ) |
49 |
45 48
|
opeq12d |
|- ( ( u = g /\ t = h ) -> <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. = <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ) |
50 |
49
|
eceq1d |
|- ( ( u = g /\ t = h ) -> [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) |
51 |
50
|
eqeq2d |
|- ( ( u = g /\ t = h ) -> ( q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R <-> q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) |
52 |
40 51
|
anbi12d |
|- ( ( u = g /\ t = h ) -> ( ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( s .P. u ) +P. ( f .P. t ) ) , ( ( s .P. t ) +P. ( f .P. u ) ) >. ] ~R ) <-> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) |
53 |
36 52
|
cbvex4vw |
|- ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) |
54 |
53
|
anbi2i |
|- ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) <-> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) ) |
55 |
54
|
imbi1i |
|- ( ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) <-> ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) ) |
56 |
55
|
2albii |
|- ( A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) <-> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( ( s .P. g ) +P. ( f .P. h ) ) , ( ( s .P. h ) +P. ( f .P. g ) ) >. ] ~R ) ) -> z = q ) ) |
57 |
20 56
|
sylibr |
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) ) |
58 |
|
eqeq1 |
|- ( z = q -> ( z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) |
59 |
58
|
anbi2d |
|- ( z = q -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
60 |
59
|
4exbidv |
|- ( z = q -> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
61 |
60
|
mo4 |
|- ( E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) -> z = q ) ) |
62 |
57 61
|
sylibr |
|- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) |