Step |
Hyp |
Ref |
Expression |
1 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
2 |
|
negsub |
|- ( ( C e. CC /\ D e. CC ) -> ( C + -u D ) = ( C - D ) ) |
3 |
1 2
|
oveqan12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( A - B ) x. ( C - D ) ) ) |
4 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
5 |
|
negcl |
|- ( D e. CC -> -u D e. CC ) |
6 |
|
muladd |
|- ( ( ( A e. CC /\ -u B e. CC ) /\ ( C e. CC /\ -u D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) ) |
7 |
5 6
|
sylanr2 |
|- ( ( ( A e. CC /\ -u B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) ) |
8 |
4 7
|
sylanl2 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) ) |
9 |
|
mul2neg |
|- ( ( D e. CC /\ B e. CC ) -> ( -u D x. -u B ) = ( D x. B ) ) |
10 |
9
|
ancoms |
|- ( ( B e. CC /\ D e. CC ) -> ( -u D x. -u B ) = ( D x. B ) ) |
11 |
10
|
oveq2d |
|- ( ( B e. CC /\ D e. CC ) -> ( ( A x. C ) + ( -u D x. -u B ) ) = ( ( A x. C ) + ( D x. B ) ) ) |
12 |
11
|
ad2ant2l |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( -u D x. -u B ) ) = ( ( A x. C ) + ( D x. B ) ) ) |
13 |
|
mulneg2 |
|- ( ( A e. CC /\ D e. CC ) -> ( A x. -u D ) = -u ( A x. D ) ) |
14 |
|
mulneg2 |
|- ( ( C e. CC /\ B e. CC ) -> ( C x. -u B ) = -u ( C x. B ) ) |
15 |
13 14
|
oveqan12d |
|- ( ( ( A e. CC /\ D e. CC ) /\ ( C e. CC /\ B e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = ( -u ( A x. D ) + -u ( C x. B ) ) ) |
16 |
|
mulcl |
|- ( ( A e. CC /\ D e. CC ) -> ( A x. D ) e. CC ) |
17 |
|
mulcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C x. B ) e. CC ) |
18 |
|
negdi |
|- ( ( ( A x. D ) e. CC /\ ( C x. B ) e. CC ) -> -u ( ( A x. D ) + ( C x. B ) ) = ( -u ( A x. D ) + -u ( C x. B ) ) ) |
19 |
16 17 18
|
syl2an |
|- ( ( ( A e. CC /\ D e. CC ) /\ ( C e. CC /\ B e. CC ) ) -> -u ( ( A x. D ) + ( C x. B ) ) = ( -u ( A x. D ) + -u ( C x. B ) ) ) |
20 |
15 19
|
eqtr4d |
|- ( ( ( A e. CC /\ D e. CC ) /\ ( C e. CC /\ B e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = -u ( ( A x. D ) + ( C x. B ) ) ) |
21 |
20
|
ancom2s |
|- ( ( ( A e. CC /\ D e. CC ) /\ ( B e. CC /\ C e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = -u ( ( A x. D ) + ( C x. B ) ) ) |
22 |
21
|
an42s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = -u ( ( A x. D ) + ( C x. B ) ) ) |
23 |
12 22
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) + -u ( ( A x. D ) + ( C x. B ) ) ) ) |
24 |
|
mulcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
25 |
|
mulcl |
|- ( ( D e. CC /\ B e. CC ) -> ( D x. B ) e. CC ) |
26 |
25
|
ancoms |
|- ( ( B e. CC /\ D e. CC ) -> ( D x. B ) e. CC ) |
27 |
|
addcl |
|- ( ( ( A x. C ) e. CC /\ ( D x. B ) e. CC ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
28 |
24 26 27
|
syl2an |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
29 |
28
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
30 |
17
|
ancoms |
|- ( ( B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
31 |
|
addcl |
|- ( ( ( A x. D ) e. CC /\ ( C x. B ) e. CC ) -> ( ( A x. D ) + ( C x. B ) ) e. CC ) |
32 |
16 30 31
|
syl2an |
|- ( ( ( A e. CC /\ D e. CC ) /\ ( B e. CC /\ C e. CC ) ) -> ( ( A x. D ) + ( C x. B ) ) e. CC ) |
33 |
32
|
an42s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( C x. B ) ) e. CC ) |
34 |
29 33
|
negsubd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( D x. B ) ) + -u ( ( A x. D ) + ( C x. B ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |
35 |
8 23 34
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |
36 |
3 35
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |