| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) | 
						
							| 2 |  | subcl |  |-  ( ( C e. CC /\ D e. CC ) -> ( C - D ) e. CC ) | 
						
							| 3 |  | mul2neg |  |-  ( ( ( A - B ) e. CC /\ ( C - D ) e. CC ) -> ( -u ( A - B ) x. -u ( C - D ) ) = ( ( A - B ) x. ( C - D ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A - B ) x. -u ( C - D ) ) = ( ( A - B ) x. ( C - D ) ) ) | 
						
							| 5 |  | negsubdi2 |  |-  ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) ) | 
						
							| 6 |  | negsubdi2 |  |-  ( ( C e. CC /\ D e. CC ) -> -u ( C - D ) = ( D - C ) ) | 
						
							| 7 | 5 6 | oveqan12d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A - B ) x. -u ( C - D ) ) = ( ( B - A ) x. ( D - C ) ) ) | 
						
							| 8 | 4 7 | eqtr3d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) x. ( C - D ) ) = ( ( B - A ) x. ( D - C ) ) ) |