Description: Product of two differences. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulm1d.1 | |- ( ph -> A e. CC ) | |
| mulnegd.2 | |- ( ph -> B e. CC ) | ||
| subdid.3 | |- ( ph -> C e. CC ) | ||
| muladdd.4 | |- ( ph -> D e. CC ) | ||
| Assertion | mulsubd | |- ( ph -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulm1d.1 | |- ( ph -> A e. CC ) | |
| 2 | mulnegd.2 | |- ( ph -> B e. CC ) | |
| 3 | subdid.3 | |- ( ph -> C e. CC ) | |
| 4 | muladdd.4 | |- ( ph -> D e. CC ) | |
| 5 | mulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |