Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> A e. CC ) |
2 |
1
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
3 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
4 |
|
simpl |
|- ( ( C e. CC /\ C =/= 0 ) -> C e. CC ) |
5 |
4
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
6 |
|
mulbinom2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
7 |
6
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) ) |
8 |
7
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) ) |
9 |
2 3 5 8
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) ) |
10 |
5 2
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
11 |
10
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) ^ 2 ) e. CC ) |
12 |
|
2cnd |
|- ( C e. CC -> 2 e. CC ) |
13 |
|
id |
|- ( C e. CC -> C e. CC ) |
14 |
12 13
|
mulcld |
|- ( C e. CC -> ( 2 x. C ) e. CC ) |
15 |
14
|
adantr |
|- ( ( C e. CC /\ C =/= 0 ) -> ( 2 x. C ) e. CC ) |
16 |
15
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 2 x. C ) e. CC ) |
17 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
18 |
17
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( A x. B ) e. CC ) |
19 |
18
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. B ) e. CC ) |
20 |
16 19
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( 2 x. C ) x. ( A x. B ) ) e. CC ) |
21 |
11 20
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) e. CC ) |
22 |
|
sqcl |
|- ( B e. CC -> ( B ^ 2 ) e. CC ) |
23 |
22
|
3ad2ant2 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( B ^ 2 ) e. CC ) |
24 |
23
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( B ^ 2 ) e. CC ) |
25 |
21 24
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) e. CC ) |
26 |
|
simpl3 |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> D e. CC ) |
27 |
|
simpr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C e. CC /\ C =/= 0 ) ) |
28 |
|
divsubdir |
|- ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) e. CC /\ D e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) ) |
29 |
25 26 27 28
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) ) |
30 |
|
divdir |
|- ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) e. CC /\ ( B ^ 2 ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) ) |
31 |
21 24 27 30
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) ) |
32 |
|
divdir |
|- ( ( ( ( C x. A ) ^ 2 ) e. CC /\ ( ( 2 x. C ) x. ( A x. B ) ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) ) |
33 |
11 20 27 32
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) ) |
34 |
|
sqmul |
|- ( ( C e. CC /\ A e. CC ) -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) |
35 |
4 1 34
|
syl2anr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) |
36 |
35
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) / C ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) ) |
37 |
|
sqcl |
|- ( C e. CC -> ( C ^ 2 ) e. CC ) |
38 |
37
|
adantr |
|- ( ( C e. CC /\ C =/= 0 ) -> ( C ^ 2 ) e. CC ) |
39 |
38
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C ^ 2 ) e. CC ) |
40 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
41 |
40
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( A ^ 2 ) e. CC ) |
42 |
41
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A ^ 2 ) e. CC ) |
43 |
|
div23 |
|- ( ( ( C ^ 2 ) e. CC /\ ( A ^ 2 ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) = ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) ) |
44 |
39 42 27 43
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) = ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) ) |
45 |
|
sqdivid |
|- ( ( C e. CC /\ C =/= 0 ) -> ( ( C ^ 2 ) / C ) = C ) |
46 |
45
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C ^ 2 ) / C ) = C ) |
47 |
46
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) = ( C x. ( A ^ 2 ) ) ) |
48 |
36 44 47
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) / C ) = ( C x. ( A ^ 2 ) ) ) |
49 |
|
div23 |
|- ( ( ( 2 x. C ) e. CC /\ ( A x. B ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) ) |
50 |
16 19 27 49
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) ) |
51 |
|
2cnd |
|- ( ( C e. CC /\ C =/= 0 ) -> 2 e. CC ) |
52 |
|
simpr |
|- ( ( C e. CC /\ C =/= 0 ) -> C =/= 0 ) |
53 |
51 4 52
|
divcan4d |
|- ( ( C e. CC /\ C =/= 0 ) -> ( ( 2 x. C ) / C ) = 2 ) |
54 |
53
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( 2 x. C ) / C ) = 2 ) |
55 |
54
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) = ( 2 x. ( A x. B ) ) ) |
56 |
50 55
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( 2 x. ( A x. B ) ) ) |
57 |
48 56
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) = ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) ) |
58 |
33 57
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) ) |
59 |
58
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |
60 |
31 59
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |
61 |
60
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) = ( ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) - ( D / C ) ) ) |
62 |
5 42
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. ( A ^ 2 ) ) e. CC ) |
63 |
|
2cnd |
|- ( ( A e. CC /\ B e. CC ) -> 2 e. CC ) |
64 |
63 17
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
65 |
64
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
66 |
65
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 2 x. ( A x. B ) ) e. CC ) |
67 |
62 66
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) e. CC ) |
68 |
52
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
69 |
24 5 68
|
divcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B ^ 2 ) / C ) e. CC ) |
70 |
26 5 68
|
divcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( D / C ) e. CC ) |
71 |
67 69 70
|
addsubassd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) - ( D / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) ) |
72 |
29 61 71
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) ) |
73 |
|
divsubdir |
|- ( ( ( B ^ 2 ) e. CC /\ D e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) - D ) / C ) = ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) |
74 |
24 26 27 73
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) - D ) / C ) = ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) |
75 |
74
|
eqcomd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) / C ) - ( D / C ) ) = ( ( ( B ^ 2 ) - D ) / C ) ) |
76 |
75
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - D ) / C ) ) ) |
77 |
9 72 76
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - D ) / C ) ) ) |