Step |
Hyp |
Ref |
Expression |
1 |
|
mulsunif2.1 |
|- ( ph -> L < |
2 |
|
mulsunif2.2 |
|- ( ph -> M < |
3 |
|
mulsunif2.3 |
|- ( ph -> A = ( L |s R ) ) |
4 |
|
mulsunif2.4 |
|- ( ph -> B = ( M |s S ) ) |
5 |
1 2 3 4
|
mulsunif2lem |
|- ( ph -> ( A x.s B ) = ( ( { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } u. { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } ) |s ( { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } u. { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } ) ) ) |
6 |
|
eqeq1 |
|- ( e = a -> ( e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) ) ) |
7 |
6
|
2rexbidv |
|- ( e = a -> ( E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> E. i e. L E. j e. M a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) ) ) |
8 |
|
oveq2 |
|- ( i = p -> ( A -s i ) = ( A -s p ) ) |
9 |
8
|
oveq1d |
|- ( i = p -> ( ( A -s i ) x.s ( B -s j ) ) = ( ( A -s p ) x.s ( B -s j ) ) ) |
10 |
9
|
oveq2d |
|- ( i = p -> ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) ) |
11 |
10
|
eqeq2d |
|- ( i = p -> ( a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) ) ) |
12 |
|
oveq2 |
|- ( j = q -> ( B -s j ) = ( B -s q ) ) |
13 |
12
|
oveq2d |
|- ( j = q -> ( ( A -s p ) x.s ( B -s j ) ) = ( ( A -s p ) x.s ( B -s q ) ) ) |
14 |
13
|
oveq2d |
|- ( j = q -> ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) |
15 |
14
|
eqeq2d |
|- ( j = q -> ( a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) <-> a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) ) |
16 |
11 15
|
cbvrex2vw |
|- ( E. i e. L E. j e. M a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) |
17 |
7 16
|
bitrdi |
|- ( e = a -> ( E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) ) |
18 |
17
|
cbvabv |
|- { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } = { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } |
19 |
|
eqeq1 |
|- ( f = b -> ( f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) ) ) |
20 |
19
|
2rexbidv |
|- ( f = b -> ( E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> E. k e. R E. l e. S b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) ) ) |
21 |
|
oveq1 |
|- ( k = r -> ( k -s A ) = ( r -s A ) ) |
22 |
21
|
oveq1d |
|- ( k = r -> ( ( k -s A ) x.s ( l -s B ) ) = ( ( r -s A ) x.s ( l -s B ) ) ) |
23 |
22
|
oveq2d |
|- ( k = r -> ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) = ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) ) |
24 |
23
|
eqeq2d |
|- ( k = r -> ( b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) ) ) |
25 |
|
oveq1 |
|- ( l = s -> ( l -s B ) = ( s -s B ) ) |
26 |
25
|
oveq2d |
|- ( l = s -> ( ( r -s A ) x.s ( l -s B ) ) = ( ( r -s A ) x.s ( s -s B ) ) ) |
27 |
26
|
oveq2d |
|- ( l = s -> ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) |
28 |
27
|
eqeq2d |
|- ( l = s -> ( b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) <-> b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) ) |
29 |
24 28
|
cbvrex2vw |
|- ( E. k e. R E. l e. S b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) |
30 |
20 29
|
bitrdi |
|- ( f = b -> ( E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) ) |
31 |
30
|
cbvabv |
|- { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } = { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } |
32 |
18 31
|
uneq12i |
|- ( { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } u. { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } ) = ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |
33 |
|
eqeq1 |
|- ( g = c -> ( g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) ) ) |
34 |
33
|
2rexbidv |
|- ( g = c -> ( E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> E. m e. L E. n e. S c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) ) ) |
35 |
|
oveq2 |
|- ( m = t -> ( A -s m ) = ( A -s t ) ) |
36 |
35
|
oveq1d |
|- ( m = t -> ( ( A -s m ) x.s ( n -s B ) ) = ( ( A -s t ) x.s ( n -s B ) ) ) |
37 |
36
|
oveq2d |
|- ( m = t -> ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) ) |
38 |
37
|
eqeq2d |
|- ( m = t -> ( c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) ) ) |
39 |
|
oveq1 |
|- ( n = u -> ( n -s B ) = ( u -s B ) ) |
40 |
39
|
oveq2d |
|- ( n = u -> ( ( A -s t ) x.s ( n -s B ) ) = ( ( A -s t ) x.s ( u -s B ) ) ) |
41 |
40
|
oveq2d |
|- ( n = u -> ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) |
42 |
41
|
eqeq2d |
|- ( n = u -> ( c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) <-> c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
43 |
38 42
|
cbvrex2vw |
|- ( E. m e. L E. n e. S c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) |
44 |
34 43
|
bitrdi |
|- ( g = c -> ( E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
45 |
44
|
cbvabv |
|- { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } = { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } |
46 |
|
eqeq1 |
|- ( h = d -> ( h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) ) ) |
47 |
46
|
2rexbidv |
|- ( h = d -> ( E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> E. o e. R E. x e. M d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) ) ) |
48 |
|
oveq1 |
|- ( o = v -> ( o -s A ) = ( v -s A ) ) |
49 |
48
|
oveq1d |
|- ( o = v -> ( ( o -s A ) x.s ( B -s x ) ) = ( ( v -s A ) x.s ( B -s x ) ) ) |
50 |
49
|
oveq2d |
|- ( o = v -> ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) ) |
51 |
50
|
eqeq2d |
|- ( o = v -> ( d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) ) ) |
52 |
|
oveq2 |
|- ( x = w -> ( B -s x ) = ( B -s w ) ) |
53 |
52
|
oveq2d |
|- ( x = w -> ( ( v -s A ) x.s ( B -s x ) ) = ( ( v -s A ) x.s ( B -s w ) ) ) |
54 |
53
|
oveq2d |
|- ( x = w -> ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) |
55 |
54
|
eqeq2d |
|- ( x = w -> ( d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) <-> d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) ) |
56 |
51 55
|
cbvrex2vw |
|- ( E. o e. R E. x e. M d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) |
57 |
47 56
|
bitrdi |
|- ( h = d -> ( E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) ) |
58 |
57
|
cbvabv |
|- { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } = { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } |
59 |
45 58
|
uneq12i |
|- ( { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } u. { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } ) = ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) |
60 |
32 59
|
oveq12i |
|- ( ( { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } u. { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } ) |s ( { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } u. { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } ) ) = ( ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) ) |
61 |
5 60
|
eqtrdi |
|- ( ph -> ( A x.s B ) = ( ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) ) ) |