| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsunif2.1 |
|- ( ph -> L < |
| 2 |
|
mulsunif2.2 |
|- ( ph -> M < |
| 3 |
|
mulsunif2.3 |
|- ( ph -> A = ( L |s R ) ) |
| 4 |
|
mulsunif2.4 |
|- ( ph -> B = ( M |s S ) ) |
| 5 |
1 2 3 4
|
mulsunif2lem |
|- ( ph -> ( A x.s B ) = ( ( { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } u. { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } ) |s ( { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } u. { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } ) ) ) |
| 6 |
|
eqeq1 |
|- ( e = a -> ( e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) ) ) |
| 7 |
6
|
2rexbidv |
|- ( e = a -> ( E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> E. i e. L E. j e. M a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) ) ) |
| 8 |
|
oveq2 |
|- ( i = p -> ( A -s i ) = ( A -s p ) ) |
| 9 |
8
|
oveq1d |
|- ( i = p -> ( ( A -s i ) x.s ( B -s j ) ) = ( ( A -s p ) x.s ( B -s j ) ) ) |
| 10 |
9
|
oveq2d |
|- ( i = p -> ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) ) |
| 11 |
10
|
eqeq2d |
|- ( i = p -> ( a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) ) ) |
| 12 |
|
oveq2 |
|- ( j = q -> ( B -s j ) = ( B -s q ) ) |
| 13 |
12
|
oveq2d |
|- ( j = q -> ( ( A -s p ) x.s ( B -s j ) ) = ( ( A -s p ) x.s ( B -s q ) ) ) |
| 14 |
13
|
oveq2d |
|- ( j = q -> ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) |
| 15 |
14
|
eqeq2d |
|- ( j = q -> ( a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s j ) ) ) <-> a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) ) |
| 16 |
11 15
|
cbvrex2vw |
|- ( E. i e. L E. j e. M a = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) |
| 17 |
7 16
|
bitrdi |
|- ( e = a -> ( E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) <-> E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) ) |
| 18 |
17
|
cbvabv |
|- { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } = { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } |
| 19 |
|
eqeq1 |
|- ( f = b -> ( f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) ) ) |
| 20 |
19
|
2rexbidv |
|- ( f = b -> ( E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> E. k e. R E. l e. S b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) ) ) |
| 21 |
|
oveq1 |
|- ( k = r -> ( k -s A ) = ( r -s A ) ) |
| 22 |
21
|
oveq1d |
|- ( k = r -> ( ( k -s A ) x.s ( l -s B ) ) = ( ( r -s A ) x.s ( l -s B ) ) ) |
| 23 |
22
|
oveq2d |
|- ( k = r -> ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) = ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) ) |
| 24 |
23
|
eqeq2d |
|- ( k = r -> ( b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) ) ) |
| 25 |
|
oveq1 |
|- ( l = s -> ( l -s B ) = ( s -s B ) ) |
| 26 |
25
|
oveq2d |
|- ( l = s -> ( ( r -s A ) x.s ( l -s B ) ) = ( ( r -s A ) x.s ( s -s B ) ) ) |
| 27 |
26
|
oveq2d |
|- ( l = s -> ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) |
| 28 |
27
|
eqeq2d |
|- ( l = s -> ( b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( l -s B ) ) ) <-> b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) ) |
| 29 |
24 28
|
cbvrex2vw |
|- ( E. k e. R E. l e. S b = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) |
| 30 |
20 29
|
bitrdi |
|- ( f = b -> ( E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) <-> E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) ) |
| 31 |
30
|
cbvabv |
|- { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } = { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } |
| 32 |
18 31
|
uneq12i |
|- ( { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } u. { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } ) = ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |
| 33 |
|
eqeq1 |
|- ( g = c -> ( g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) ) ) |
| 34 |
33
|
2rexbidv |
|- ( g = c -> ( E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> E. m e. L E. n e. S c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) ) ) |
| 35 |
|
oveq2 |
|- ( m = t -> ( A -s m ) = ( A -s t ) ) |
| 36 |
35
|
oveq1d |
|- ( m = t -> ( ( A -s m ) x.s ( n -s B ) ) = ( ( A -s t ) x.s ( n -s B ) ) ) |
| 37 |
36
|
oveq2d |
|- ( m = t -> ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) ) |
| 38 |
37
|
eqeq2d |
|- ( m = t -> ( c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) ) ) |
| 39 |
|
oveq1 |
|- ( n = u -> ( n -s B ) = ( u -s B ) ) |
| 40 |
39
|
oveq2d |
|- ( n = u -> ( ( A -s t ) x.s ( n -s B ) ) = ( ( A -s t ) x.s ( u -s B ) ) ) |
| 41 |
40
|
oveq2d |
|- ( n = u -> ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) |
| 42 |
41
|
eqeq2d |
|- ( n = u -> ( c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( n -s B ) ) ) <-> c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
| 43 |
38 42
|
cbvrex2vw |
|- ( E. m e. L E. n e. S c = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) |
| 44 |
34 43
|
bitrdi |
|- ( g = c -> ( E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) <-> E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
| 45 |
44
|
cbvabv |
|- { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } = { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } |
| 46 |
|
eqeq1 |
|- ( h = d -> ( h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) ) ) |
| 47 |
46
|
2rexbidv |
|- ( h = d -> ( E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> E. o e. R E. x e. M d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) ) ) |
| 48 |
|
oveq1 |
|- ( o = v -> ( o -s A ) = ( v -s A ) ) |
| 49 |
48
|
oveq1d |
|- ( o = v -> ( ( o -s A ) x.s ( B -s x ) ) = ( ( v -s A ) x.s ( B -s x ) ) ) |
| 50 |
49
|
oveq2d |
|- ( o = v -> ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) ) |
| 51 |
50
|
eqeq2d |
|- ( o = v -> ( d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) ) ) |
| 52 |
|
oveq2 |
|- ( x = w -> ( B -s x ) = ( B -s w ) ) |
| 53 |
52
|
oveq2d |
|- ( x = w -> ( ( v -s A ) x.s ( B -s x ) ) = ( ( v -s A ) x.s ( B -s w ) ) ) |
| 54 |
53
|
oveq2d |
|- ( x = w -> ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) |
| 55 |
54
|
eqeq2d |
|- ( x = w -> ( d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s x ) ) ) <-> d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) ) |
| 56 |
51 55
|
cbvrex2vw |
|- ( E. o e. R E. x e. M d = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) |
| 57 |
47 56
|
bitrdi |
|- ( h = d -> ( E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) <-> E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) ) |
| 58 |
57
|
cbvabv |
|- { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } = { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } |
| 59 |
45 58
|
uneq12i |
|- ( { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } u. { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } ) = ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) |
| 60 |
32 59
|
oveq12i |
|- ( ( { e | E. i e. L E. j e. M e = ( ( A x.s B ) -s ( ( A -s i ) x.s ( B -s j ) ) ) } u. { f | E. k e. R E. l e. S f = ( ( A x.s B ) -s ( ( k -s A ) x.s ( l -s B ) ) ) } ) |s ( { g | E. m e. L E. n e. S g = ( ( A x.s B ) +s ( ( A -s m ) x.s ( n -s B ) ) ) } u. { h | E. o e. R E. x e. M h = ( ( A x.s B ) +s ( ( o -s A ) x.s ( B -s x ) ) ) } ) ) = ( ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) ) |
| 61 |
5 60
|
eqtrdi |
|- ( ph -> ( A x.s B ) = ( ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) ) ) |