| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( a = b -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							2rexbidv | 
							 |-  ( a = b -> ( E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. X E. q e. Y b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							 |-  ( p = r -> ( p x.s B ) = ( r x.s B ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq1d | 
							 |-  ( p = r -> ( ( p x.s B ) +s ( A x.s q ) ) = ( ( r x.s B ) +s ( A x.s q ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							 |-  ( p = r -> ( p x.s q ) = ( r x.s q ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							oveq12d | 
							 |-  ( p = r -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq2d | 
							 |-  ( p = r -> ( b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> b = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							oveq2 | 
							 |-  ( q = s -> ( A x.s q ) = ( A x.s s ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2d | 
							 |-  ( q = s -> ( ( r x.s B ) +s ( A x.s q ) ) = ( ( r x.s B ) +s ( A x.s s ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq2 | 
							 |-  ( q = s -> ( r x.s q ) = ( r x.s s ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							oveq12d | 
							 |-  ( q = s -> ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqeq2d | 
							 |-  ( q = s -> ( b = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) <-> b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							cbvrex2vw | 
							 |-  ( E. p e. X E. q e. Y b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) )  | 
						
						
							| 14 | 
							
								2 13
							 | 
							bitrdi | 
							 |-  ( a = b -> ( E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							cbvabv | 
							 |-  { a | E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } = { b | E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } |