Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> B e. NN ) |
2 |
|
mucl |
|- ( B e. NN -> ( mmu ` B ) e. ZZ ) |
3 |
1 2
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` B ) e. ZZ ) |
4 |
3
|
zcnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` B ) e. CC ) |
5 |
4
|
mul02d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( 0 x. ( mmu ` B ) ) = 0 ) |
6 |
|
simpr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` A ) = 0 ) |
7 |
6
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( 0 x. ( mmu ` B ) ) ) |
8 |
|
mumullem1 |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
9 |
8
|
3adantl3 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
10 |
5 7 9
|
3eqtr4rd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |
11 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> A e. NN ) |
12 |
|
mucl |
|- ( A e. NN -> ( mmu ` A ) e. ZZ ) |
13 |
11 12
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` A ) e. ZZ ) |
14 |
13
|
zcnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` A ) e. CC ) |
15 |
14
|
mul01d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( ( mmu ` A ) x. 0 ) = 0 ) |
16 |
|
simpr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` B ) = 0 ) |
17 |
16
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( ( mmu ` A ) x. 0 ) ) |
18 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
19 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
20 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
21 |
18 19 20
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) |
22 |
21
|
fveq2d |
|- ( ( A e. NN /\ B e. NN ) -> ( mmu ` ( A x. B ) ) = ( mmu ` ( B x. A ) ) ) |
23 |
22
|
adantr |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = ( mmu ` ( B x. A ) ) ) |
24 |
|
mumullem1 |
|- ( ( ( B e. NN /\ A e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( B x. A ) ) = 0 ) |
25 |
24
|
ancom1s |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( B x. A ) ) = 0 ) |
26 |
23 25
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
27 |
26
|
3adantl3 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
28 |
15 17 27
|
3eqtr4rd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |
29 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> A e. NN ) |
30 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> B e. NN ) |
31 |
29 30
|
nnmulcld |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( A x. B ) e. NN ) |
32 |
|
mumullem2 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) =/= 0 ) |
33 |
|
muval2 |
|- ( ( ( A x. B ) e. NN /\ ( mmu ` ( A x. B ) ) =/= 0 ) -> ( mmu ` ( A x. B ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) ) |
34 |
31 32 33
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) ) |
35 |
|
neg1cn |
|- -u 1 e. CC |
36 |
35
|
a1i |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> -u 1 e. CC ) |
37 |
|
fzfi |
|- ( 1 ... B ) e. Fin |
38 |
|
prmssnn |
|- Prime C_ NN |
39 |
|
rabss2 |
|- ( Prime C_ NN -> { p e. Prime | p || B } C_ { p e. NN | p || B } ) |
40 |
38 39
|
ax-mp |
|- { p e. Prime | p || B } C_ { p e. NN | p || B } |
41 |
|
dvdsssfz1 |
|- ( B e. NN -> { p e. NN | p || B } C_ ( 1 ... B ) ) |
42 |
30 41
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. NN | p || B } C_ ( 1 ... B ) ) |
43 |
40 42
|
sstrid |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || B } C_ ( 1 ... B ) ) |
44 |
|
ssfi |
|- ( ( ( 1 ... B ) e. Fin /\ { p e. Prime | p || B } C_ ( 1 ... B ) ) -> { p e. Prime | p || B } e. Fin ) |
45 |
37 43 44
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || B } e. Fin ) |
46 |
|
hashcl |
|- ( { p e. Prime | p || B } e. Fin -> ( # ` { p e. Prime | p || B } ) e. NN0 ) |
47 |
45 46
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || B } ) e. NN0 ) |
48 |
|
fzfi |
|- ( 1 ... A ) e. Fin |
49 |
|
rabss2 |
|- ( Prime C_ NN -> { p e. Prime | p || A } C_ { p e. NN | p || A } ) |
50 |
38 49
|
ax-mp |
|- { p e. Prime | p || A } C_ { p e. NN | p || A } |
51 |
|
dvdsssfz1 |
|- ( A e. NN -> { p e. NN | p || A } C_ ( 1 ... A ) ) |
52 |
29 51
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. NN | p || A } C_ ( 1 ... A ) ) |
53 |
50 52
|
sstrid |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || A } C_ ( 1 ... A ) ) |
54 |
|
ssfi |
|- ( ( ( 1 ... A ) e. Fin /\ { p e. Prime | p || A } C_ ( 1 ... A ) ) -> { p e. Prime | p || A } e. Fin ) |
55 |
48 53 54
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || A } e. Fin ) |
56 |
|
hashcl |
|- ( { p e. Prime | p || A } e. Fin -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
57 |
55 56
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
58 |
36 47 57
|
expaddd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( -u 1 ^ ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) = ( ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) x. ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) ) |
59 |
|
simpr |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> p e. Prime ) |
60 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. NN ) |
61 |
60
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. ZZ ) |
62 |
61
|
adantlr |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> A e. ZZ ) |
63 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. NN ) |
64 |
63
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. ZZ ) |
65 |
64
|
adantlr |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> B e. ZZ ) |
66 |
|
euclemma |
|- ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p || ( A x. B ) <-> ( p || A \/ p || B ) ) ) |
67 |
59 62 65 66
|
syl3anc |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p || ( A x. B ) <-> ( p || A \/ p || B ) ) ) |
68 |
67
|
rabbidva |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || ( A x. B ) } = { p e. Prime | ( p || A \/ p || B ) } ) |
69 |
|
unrab |
|- ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) = { p e. Prime | ( p || A \/ p || B ) } |
70 |
68 69
|
eqtr4di |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || ( A x. B ) } = ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) |
71 |
70
|
fveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || ( A x. B ) } ) = ( # ` ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) ) |
72 |
|
inrab |
|- ( { p e. Prime | p || A } i^i { p e. Prime | p || B } ) = { p e. Prime | ( p || A /\ p || B ) } |
73 |
|
nprmdvds1 |
|- ( p e. Prime -> -. p || 1 ) |
74 |
73
|
adantl |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> -. p || 1 ) |
75 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
76 |
75
|
adantl |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> p e. ZZ ) |
77 |
|
dvdsgcd |
|- ( ( p e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
78 |
76 62 65 77
|
syl3anc |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
79 |
|
simpll3 |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( A gcd B ) = 1 ) |
80 |
79
|
breq2d |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) <-> p || 1 ) ) |
81 |
78 80
|
sylibd |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p || A /\ p || B ) -> p || 1 ) ) |
82 |
74 81
|
mtod |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> -. ( p || A /\ p || B ) ) |
83 |
82
|
ralrimiva |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> A. p e. Prime -. ( p || A /\ p || B ) ) |
84 |
|
rabeq0 |
|- ( { p e. Prime | ( p || A /\ p || B ) } = (/) <-> A. p e. Prime -. ( p || A /\ p || B ) ) |
85 |
83 84
|
sylibr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | ( p || A /\ p || B ) } = (/) ) |
86 |
72 85
|
eqtrid |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( { p e. Prime | p || A } i^i { p e. Prime | p || B } ) = (/) ) |
87 |
|
hashun |
|- ( ( { p e. Prime | p || A } e. Fin /\ { p e. Prime | p || B } e. Fin /\ ( { p e. Prime | p || A } i^i { p e. Prime | p || B } ) = (/) ) -> ( # ` ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) = ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) |
88 |
55 45 86 87
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) = ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) |
89 |
71 88
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || ( A x. B ) } ) = ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) |
90 |
89
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) = ( -u 1 ^ ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) ) |
91 |
|
simprl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` A ) =/= 0 ) |
92 |
|
muval2 |
|- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
93 |
29 91 92
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
94 |
|
simprr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` B ) =/= 0 ) |
95 |
|
muval2 |
|- ( ( B e. NN /\ ( mmu ` B ) =/= 0 ) -> ( mmu ` B ) = ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) |
96 |
30 94 95
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` B ) = ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) |
97 |
93 96
|
oveq12d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) x. ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) ) |
98 |
58 90 97
|
3eqtr4rd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) ) |
99 |
34 98
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |
100 |
10 28 99
|
pm2.61da2ne |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |