Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
2 |
1
|
adantl |
|- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> p e. ZZ ) |
3 |
|
zsqcl |
|- ( p e. ZZ -> ( p ^ 2 ) e. ZZ ) |
4 |
2 3
|
syl |
|- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ ) |
5 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
6 |
5
|
ad2antrr |
|- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> A e. ZZ ) |
7 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
8 |
7
|
ad2antlr |
|- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> B e. ZZ ) |
9 |
|
dvdsmultr1 |
|- ( ( ( p ^ 2 ) e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( p ^ 2 ) || A -> ( p ^ 2 ) || ( A x. B ) ) ) |
10 |
4 6 8 9
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> ( ( p ^ 2 ) || A -> ( p ^ 2 ) || ( A x. B ) ) ) |
11 |
10
|
reximdva |
|- ( ( A e. NN /\ B e. NN ) -> ( E. p e. Prime ( p ^ 2 ) || A -> E. p e. Prime ( p ^ 2 ) || ( A x. B ) ) ) |
12 |
|
isnsqf |
|- ( A e. NN -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
13 |
12
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
14 |
|
nnmulcl |
|- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |
15 |
|
isnsqf |
|- ( ( A x. B ) e. NN -> ( ( mmu ` ( A x. B ) ) = 0 <-> E. p e. Prime ( p ^ 2 ) || ( A x. B ) ) ) |
16 |
14 15
|
syl |
|- ( ( A e. NN /\ B e. NN ) -> ( ( mmu ` ( A x. B ) ) = 0 <-> E. p e. Prime ( p ^ 2 ) || ( A x. B ) ) ) |
17 |
11 13 16
|
3imtr4d |
|- ( ( A e. NN /\ B e. NN ) -> ( ( mmu ` A ) = 0 -> ( mmu ` ( A x. B ) ) = 0 ) ) |
18 |
17
|
imp |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |