Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26 |
|- ( A. p e. Prime ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) |
2 |
|
simpr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> p e. Prime ) |
3 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. NN ) |
4 |
2 3
|
pccld |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
5 |
4
|
nn0red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. RR ) |
6 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. NN ) |
7 |
2 6
|
pccld |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. NN0 ) |
8 |
7
|
nn0red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. RR ) |
9 |
|
1red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> 1 e. RR ) |
10 |
|
le2add |
|- ( ( ( ( p pCnt A ) e. RR /\ ( p pCnt B ) e. RR ) /\ ( 1 e. RR /\ 1 e. RR ) ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) ) ) |
11 |
5 8 9 9 10
|
syl22anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) ) ) |
12 |
|
ax-1ne0 |
|- 1 =/= 0 |
13 |
|
simpl3 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( A gcd B ) = 1 ) |
14 |
13
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A gcd B ) ) = ( p pCnt 1 ) ) |
15 |
3
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. ZZ ) |
16 |
6
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. ZZ ) |
17 |
|
pcgcd |
|- ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
18 |
2 15 16 17
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
19 |
|
pc1 |
|- ( p e. Prime -> ( p pCnt 1 ) = 0 ) |
20 |
19
|
adantl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt 1 ) = 0 ) |
21 |
14 18 20
|
3eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) = 0 ) |
22 |
|
ifid |
|- if ( ( p pCnt A ) <_ ( p pCnt B ) , 1 , 1 ) = 1 |
23 |
|
ifeq12 |
|- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> if ( ( p pCnt A ) <_ ( p pCnt B ) , 1 , 1 ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
24 |
22 23
|
eqtr3id |
|- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> 1 = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
25 |
24
|
eqeq1d |
|- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> ( 1 = 0 <-> if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) = 0 ) ) |
26 |
21 25
|
syl5ibrcom |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> 1 = 0 ) ) |
27 |
26
|
necon3ad |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 =/= 0 -> -. ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) ) |
28 |
12 27
|
mpi |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> -. ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) |
29 |
|
ax-1cn |
|- 1 e. CC |
30 |
5
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. CC ) |
31 |
|
subeq0 |
|- ( ( 1 e. CC /\ ( p pCnt A ) e. CC ) -> ( ( 1 - ( p pCnt A ) ) = 0 <-> 1 = ( p pCnt A ) ) ) |
32 |
29 30 31
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 - ( p pCnt A ) ) = 0 <-> 1 = ( p pCnt A ) ) ) |
33 |
8
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. CC ) |
34 |
|
subeq0 |
|- ( ( 1 e. CC /\ ( p pCnt B ) e. CC ) -> ( ( 1 - ( p pCnt B ) ) = 0 <-> 1 = ( p pCnt B ) ) ) |
35 |
29 33 34
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 - ( p pCnt B ) ) = 0 <-> 1 = ( p pCnt B ) ) ) |
36 |
32 35
|
anbi12d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) <-> ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) ) |
37 |
28 36
|
mtbird |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) |
38 |
37
|
adantr |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) |
39 |
|
eqcom |
|- ( ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) <-> ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) ) |
40 |
|
1re |
|- 1 e. RR |
41 |
40 40
|
readdcli |
|- ( 1 + 1 ) e. RR |
42 |
41
|
recni |
|- ( 1 + 1 ) e. CC |
43 |
4 7
|
nn0addcld |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. NN0 ) |
44 |
43
|
nn0red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. RR ) |
45 |
44
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. CC ) |
46 |
|
subeq0 |
|- ( ( ( 1 + 1 ) e. CC /\ ( ( p pCnt A ) + ( p pCnt B ) ) e. CC ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
47 |
42 45 46
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
48 |
47 39
|
bitrdi |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) ) ) |
49 |
9
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> 1 e. CC ) |
50 |
49 49 30 33
|
addsub4d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) ) |
51 |
50
|
eqeq1d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
52 |
48 51
|
bitr3d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
53 |
52
|
adantr |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
54 |
|
subge0 |
|- ( ( 1 e. RR /\ ( p pCnt A ) e. RR ) -> ( 0 <_ ( 1 - ( p pCnt A ) ) <-> ( p pCnt A ) <_ 1 ) ) |
55 |
40 5 54
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 0 <_ ( 1 - ( p pCnt A ) ) <-> ( p pCnt A ) <_ 1 ) ) |
56 |
|
subge0 |
|- ( ( 1 e. RR /\ ( p pCnt B ) e. RR ) -> ( 0 <_ ( 1 - ( p pCnt B ) ) <-> ( p pCnt B ) <_ 1 ) ) |
57 |
40 8 56
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 0 <_ ( 1 - ( p pCnt B ) ) <-> ( p pCnt B ) <_ 1 ) ) |
58 |
55 57
|
anbi12d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) <-> ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) ) |
59 |
|
resubcl |
|- ( ( 1 e. RR /\ ( p pCnt A ) e. RR ) -> ( 1 - ( p pCnt A ) ) e. RR ) |
60 |
40 5 59
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 - ( p pCnt A ) ) e. RR ) |
61 |
|
resubcl |
|- ( ( 1 e. RR /\ ( p pCnt B ) e. RR ) -> ( 1 - ( p pCnt B ) ) e. RR ) |
62 |
40 8 61
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 - ( p pCnt B ) ) e. RR ) |
63 |
|
add20 |
|- ( ( ( ( 1 - ( p pCnt A ) ) e. RR /\ 0 <_ ( 1 - ( p pCnt A ) ) ) /\ ( ( 1 - ( p pCnt B ) ) e. RR /\ 0 <_ ( 1 - ( p pCnt B ) ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
64 |
63
|
an4s |
|- ( ( ( ( 1 - ( p pCnt A ) ) e. RR /\ ( 1 - ( p pCnt B ) ) e. RR ) /\ ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
65 |
64
|
ex |
|- ( ( ( 1 - ( p pCnt A ) ) e. RR /\ ( 1 - ( p pCnt B ) ) e. RR ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
66 |
60 62 65
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
67 |
58 66
|
sylbird |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
68 |
67
|
imp |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
69 |
53 68
|
bitrd |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
70 |
39 69
|
syl5bb |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
71 |
70
|
necon3abid |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) <-> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
72 |
38 71
|
mpbird |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) |
73 |
72
|
ex |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
74 |
11 73
|
jcad |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
75 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
76 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
77 |
75 76
|
jca |
|- ( A e. NN -> ( A e. ZZ /\ A =/= 0 ) ) |
78 |
3 77
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( A e. ZZ /\ A =/= 0 ) ) |
79 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
80 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
81 |
79 80
|
jca |
|- ( B e. NN -> ( B e. ZZ /\ B =/= 0 ) ) |
82 |
6 81
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( B e. ZZ /\ B =/= 0 ) ) |
83 |
|
pcmul |
|- ( ( p e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt ( A x. B ) ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) |
84 |
2 78 82 83
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A x. B ) ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) |
85 |
84
|
breq1d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt ( A x. B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 ) ) |
86 |
|
1nn0 |
|- 1 e. NN0 |
87 |
|
nn0leltp1 |
|- ( ( ( ( p pCnt A ) + ( p pCnt B ) ) e. NN0 /\ 1 e. NN0 ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) ) ) |
88 |
43 86 87
|
sylancl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) ) ) |
89 |
|
ltlen |
|- ( ( ( ( p pCnt A ) + ( p pCnt B ) ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
90 |
44 41 89
|
sylancl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
91 |
85 88 90
|
3bitrd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt ( A x. B ) ) <_ 1 <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
92 |
74 91
|
sylibrd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( p pCnt ( A x. B ) ) <_ 1 ) ) |
93 |
92
|
ralimdva |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( A. p e. Prime ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
94 |
1 93
|
syl5bir |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) -> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
95 |
|
issqf |
|- ( A e. NN -> ( ( mmu ` A ) =/= 0 <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |
96 |
|
issqf |
|- ( B e. NN -> ( ( mmu ` B ) =/= 0 <-> A. p e. Prime ( p pCnt B ) <_ 1 ) ) |
97 |
95 96
|
bi2anan9 |
|- ( ( A e. NN /\ B e. NN ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) ) |
98 |
97
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) ) |
99 |
|
nnmulcl |
|- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |
100 |
99
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( A x. B ) e. NN ) |
101 |
|
issqf |
|- ( ( A x. B ) e. NN -> ( ( mmu ` ( A x. B ) ) =/= 0 <-> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
102 |
100 101
|
syl |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( mmu ` ( A x. B ) ) =/= 0 <-> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
103 |
94 98 102
|
3imtr4d |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) -> ( mmu ` ( A x. B ) ) =/= 0 ) ) |
104 |
103
|
imp |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) =/= 0 ) |