Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( x = A -> ( ( p ^ 2 ) || x <-> ( p ^ 2 ) || A ) ) |
2 |
1
|
rexbidv |
|- ( x = A -> ( E. p e. Prime ( p ^ 2 ) || x <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
3 |
|
breq2 |
|- ( x = A -> ( p || x <-> p || A ) ) |
4 |
3
|
rabbidv |
|- ( x = A -> { p e. Prime | p || x } = { p e. Prime | p || A } ) |
5 |
4
|
fveq2d |
|- ( x = A -> ( # ` { p e. Prime | p || x } ) = ( # ` { p e. Prime | p || A } ) ) |
6 |
5
|
oveq2d |
|- ( x = A -> ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
7 |
2 6
|
ifbieq2d |
|- ( x = A -> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
8 |
|
df-mu |
|- mmu = ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |
9 |
|
c0ex |
|- 0 e. _V |
10 |
|
ovex |
|- ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) e. _V |
11 |
9 10
|
ifex |
|- if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) e. _V |
12 |
7 8 11
|
fvmpt |
|- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |