Step |
Hyp |
Ref |
Expression |
1 |
|
muval |
|- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
3 |
|
exprmfct |
|- ( P e. ( ZZ>= ` 2 ) -> E. p e. Prime p || P ) |
4 |
3
|
3ad2ant2 |
|- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> E. p e. Prime p || P ) |
5 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
6 |
|
simpl2 |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> P e. ( ZZ>= ` 2 ) ) |
7 |
|
eluz2b2 |
|- ( P e. ( ZZ>= ` 2 ) <-> ( P e. NN /\ 1 < P ) ) |
8 |
6 7
|
sylib |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P e. NN /\ 1 < P ) ) |
9 |
8
|
simpld |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> P e. NN ) |
10 |
|
dvdssqlem |
|- ( ( p e. NN /\ P e. NN ) -> ( p || P <-> ( p ^ 2 ) || ( P ^ 2 ) ) ) |
11 |
5 9 10
|
syl2an2 |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p || P <-> ( p ^ 2 ) || ( P ^ 2 ) ) ) |
12 |
|
simpl3 |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P ^ 2 ) || A ) |
13 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
14 |
13
|
adantl |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> p e. ZZ ) |
15 |
|
zsqcl |
|- ( p e. ZZ -> ( p ^ 2 ) e. ZZ ) |
16 |
14 15
|
syl |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ ) |
17 |
|
eluzelz |
|- ( P e. ( ZZ>= ` 2 ) -> P e. ZZ ) |
18 |
|
zsqcl |
|- ( P e. ZZ -> ( P ^ 2 ) e. ZZ ) |
19 |
6 17 18
|
3syl |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P ^ 2 ) e. ZZ ) |
20 |
|
simpl1 |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> A e. NN ) |
21 |
20
|
nnzd |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> A e. ZZ ) |
22 |
|
dvdstr |
|- ( ( ( p ^ 2 ) e. ZZ /\ ( P ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( p ^ 2 ) || ( P ^ 2 ) /\ ( P ^ 2 ) || A ) -> ( p ^ 2 ) || A ) ) |
23 |
16 19 21 22
|
syl3anc |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( ( ( p ^ 2 ) || ( P ^ 2 ) /\ ( P ^ 2 ) || A ) -> ( p ^ 2 ) || A ) ) |
24 |
12 23
|
mpan2d |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( ( p ^ 2 ) || ( P ^ 2 ) -> ( p ^ 2 ) || A ) ) |
25 |
11 24
|
sylbid |
|- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p || P -> ( p ^ 2 ) || A ) ) |
26 |
25
|
reximdva |
|- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( E. p e. Prime p || P -> E. p e. Prime ( p ^ 2 ) || A ) ) |
27 |
4 26
|
mpd |
|- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> E. p e. Prime ( p ^ 2 ) || A ) |
28 |
27
|
iftrued |
|- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 ) |
29 |
2 28
|
eqtrd |
|- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = 0 ) |