Description: Move the left term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvllmuld.1 | |- ( ph -> A e. CC ) |
|
| mvllmuld.2 | |- ( ph -> B e. CC ) |
||
| mvllmuld.3 | |- ( ph -> A =/= 0 ) |
||
| mvllmuld.4 | |- ( ph -> ( A x. B ) = C ) |
||
| Assertion | mvllmuld | |- ( ph -> B = ( C / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvllmuld.1 | |- ( ph -> A e. CC ) |
|
| 2 | mvllmuld.2 | |- ( ph -> B e. CC ) |
|
| 3 | mvllmuld.3 | |- ( ph -> A =/= 0 ) |
|
| 4 | mvllmuld.4 | |- ( ph -> ( A x. B ) = C ) |
|
| 5 | 2 1 3 | divcan4d | |- ( ph -> ( ( B x. A ) / A ) = B ) |
| 6 | 1 2 | mulcomd | |- ( ph -> ( A x. B ) = ( B x. A ) ) |
| 7 | 6 4 | eqtr3d | |- ( ph -> ( B x. A ) = C ) |
| 8 | 7 | oveq1d | |- ( ph -> ( ( B x. A ) / A ) = ( C / A ) ) |
| 9 | 5 8 | eqtr3d | |- ( ph -> B = ( C / A ) ) |