Metamath Proof Explorer


Theorem mvllmuld

Description: Move the left term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvllmuld.1
|- ( ph -> A e. CC )
mvllmuld.2
|- ( ph -> B e. CC )
mvllmuld.3
|- ( ph -> A =/= 0 )
mvllmuld.4
|- ( ph -> ( A x. B ) = C )
Assertion mvllmuld
|- ( ph -> B = ( C / A ) )

Proof

Step Hyp Ref Expression
1 mvllmuld.1
 |-  ( ph -> A e. CC )
2 mvllmuld.2
 |-  ( ph -> B e. CC )
3 mvllmuld.3
 |-  ( ph -> A =/= 0 )
4 mvllmuld.4
 |-  ( ph -> ( A x. B ) = C )
5 2 1 3 divcan4d
 |-  ( ph -> ( ( B x. A ) / A ) = B )
6 1 2 mulcomd
 |-  ( ph -> ( A x. B ) = ( B x. A ) )
7 6 4 eqtr3d
 |-  ( ph -> ( B x. A ) = C )
8 7 oveq1d
 |-  ( ph -> ( ( B x. A ) / A ) = ( C / A ) )
9 5 8 eqtr3d
 |-  ( ph -> B = ( C / A ) )