Metamath Proof Explorer


Theorem mvlraddd

Description: Move the right term in a sum on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlraddd.1
|- ( ph -> A e. CC )
mvlraddd.2
|- ( ph -> B e. CC )
mvlraddd.3
|- ( ph -> ( A + B ) = C )
Assertion mvlraddd
|- ( ph -> A = ( C - B ) )

Proof

Step Hyp Ref Expression
1 mvlraddd.1
 |-  ( ph -> A e. CC )
2 mvlraddd.2
 |-  ( ph -> B e. CC )
3 mvlraddd.3
 |-  ( ph -> ( A + B ) = C )
4 1 2 pncand
 |-  ( ph -> ( ( A + B ) - B ) = A )
5 3 oveq1d
 |-  ( ph -> ( ( A + B ) - B ) = ( C - B ) )
6 4 5 eqtr3d
 |-  ( ph -> A = ( C - B ) )