Metamath Proof Explorer


Theorem mvrladdd

Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvrraddd.1
|- ( ph -> B e. CC )
mvrraddd.2
|- ( ph -> C e. CC )
mvrraddd.3
|- ( ph -> A = ( B + C ) )
Assertion mvrladdd
|- ( ph -> ( A - B ) = C )

Proof

Step Hyp Ref Expression
1 mvrraddd.1
 |-  ( ph -> B e. CC )
2 mvrraddd.2
 |-  ( ph -> C e. CC )
3 mvrraddd.3
 |-  ( ph -> A = ( B + C ) )
4 1 2 3 comraddd
 |-  ( ph -> A = ( C + B ) )
5 2 1 4 mvrraddd
 |-  ( ph -> ( A - B ) = C )