Step |
Hyp |
Ref |
Expression |
1 |
|
mvrfval.v |
|- V = ( I mVar R ) |
2 |
|
mvrfval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
3 |
|
mvrfval.z |
|- .0. = ( 0g ` R ) |
4 |
|
mvrfval.o |
|- .1. = ( 1r ` R ) |
5 |
|
mvrfval.i |
|- ( ph -> I e. W ) |
6 |
|
mvrfval.r |
|- ( ph -> R e. Y ) |
7 |
|
mvrval.x |
|- ( ph -> X e. I ) |
8 |
1 2 3 4 5 6
|
mvrfval |
|- ( ph -> V = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |
9 |
8
|
fveq1d |
|- ( ph -> ( V ` X ) = ( ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ` X ) ) |
10 |
|
eqeq2 |
|- ( x = X -> ( y = x <-> y = X ) ) |
11 |
10
|
ifbid |
|- ( x = X -> if ( y = x , 1 , 0 ) = if ( y = X , 1 , 0 ) ) |
12 |
11
|
mpteq2dv |
|- ( x = X -> ( y e. I |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) |
13 |
12
|
eqeq2d |
|- ( x = X -> ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) <-> f = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
14 |
13
|
ifbid |
|- ( x = X -> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) = if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) |
15 |
14
|
mpteq2dv |
|- ( x = X -> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
16 |
|
eqid |
|- ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) |
17 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
18 |
2 17
|
rabex2 |
|- D e. _V |
19 |
18
|
mptex |
|- ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) e. _V |
20 |
15 16 19
|
fvmpt |
|- ( X e. I -> ( ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ` X ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
21 |
7 20
|
syl |
|- ( ph -> ( ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ` X ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
22 |
9 21
|
eqtrd |
|- ( ph -> ( V ` X ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |