Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0i | |- ( B e. A -> -. A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | |- -. B e. (/) |
|
| 2 | eleq2 | |- ( A = (/) -> ( B e. A <-> B e. (/) ) ) |
|
| 3 | 1 2 | mtbiri | |- ( A = (/) -> -. B e. A ) |
| 4 | 3 | con2i | |- ( B e. A -> -. A = (/) ) |