Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | n0i | |- ( B e. A -> -. A = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel | |- -. B e. (/) |
|
2 | eleq2 | |- ( A = (/) -> ( B e. A <-> B e. (/) ) ) |
|
3 | 1 2 | mtbiri | |- ( A = (/) -> -. B e. A ) |
4 | 3 | con2i | |- ( B e. A -> -. A = (/) ) |