Metamath Proof Explorer


Theorem n0moeu

Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010)

Ref Expression
Assertion n0moeu
|- ( A =/= (/) -> ( E* x x e. A <-> E! x x e. A ) )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( A =/= (/) <-> E. x x e. A )
2 1 biimpi
 |-  ( A =/= (/) -> E. x x e. A )
3 2 biantrurd
 |-  ( A =/= (/) -> ( E* x x e. A <-> ( E. x x e. A /\ E* x x e. A ) ) )
4 df-eu
 |-  ( E! x x e. A <-> ( E. x x e. A /\ E* x x e. A ) )
5 3 4 bitr4di
 |-  ( A =/= (/) -> ( E* x x e. A <-> E! x x e. A ) )