Description: There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | n0rex | |- ( A =/= (/) -> E. x e. A x e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( x e. A -> x e. A ) |
|
2 | 1 | ancli | |- ( x e. A -> ( x e. A /\ x e. A ) ) |
3 | 2 | eximi | |- ( E. x x e. A -> E. x ( x e. A /\ x e. A ) ) |
4 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
5 | df-rex | |- ( E. x e. A x e. A <-> E. x ( x e. A /\ x e. A ) ) |
|
6 | 3 4 5 | 3imtr4i | |- ( A =/= (/) -> E. x e. A x e. A ) |