Metamath Proof Explorer


Theorem nabctnabc

Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis nabctnabc.1
|- -. ( ph -> ( ps /\ ch ) )
Assertion nabctnabc
|- ( -. ph -> ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 nabctnabc.1
 |-  -. ( ph -> ( ps /\ ch ) )
2 pm4.61
 |-  ( -. ( ph -> ( ps /\ ch ) ) <-> ( ph /\ -. ( ps /\ ch ) ) )
3 2 biimpi
 |-  ( -. ( ph -> ( ps /\ ch ) ) -> ( ph /\ -. ( ps /\ ch ) ) )
4 1 3 ax-mp
 |-  ( ph /\ -. ( ps /\ ch ) )
5 4 simpli
 |-  ph
6 4 simpri
 |-  -. ( ps /\ ch )
7 5 6 2th
 |-  ( ph <-> -. ( ps /\ ch ) )
8 bicom
 |-  ( ( ph <-> -. ( ps /\ ch ) ) <-> ( -. ( ps /\ ch ) <-> ph ) )
9 8 biimpi
 |-  ( ( ph <-> -. ( ps /\ ch ) ) -> ( -. ( ps /\ ch ) <-> ph ) )
10 7 9 ax-mp
 |-  ( -. ( ps /\ ch ) <-> ph )
11 10 biimpi
 |-  ( -. ( ps /\ ch ) -> ph )
12 11 con3i
 |-  ( -. ph -> -. -. ( ps /\ ch ) )
13 12 notnotrd
 |-  ( -. ph -> ( ps /\ ch ) )