Step |
Hyp |
Ref |
Expression |
1 |
|
isnacs.f |
|- F = ( mrCls ` C ) |
2 |
1
|
isnacs |
|- ( C e. ( NoeACS ` X ) <-> ( C e. ( ACS ` X ) /\ A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) ) ) |
3 |
2
|
simprbi |
|- ( C e. ( NoeACS ` X ) -> A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) ) |
4 |
|
eqeq1 |
|- ( s = S -> ( s = ( F ` g ) <-> S = ( F ` g ) ) ) |
5 |
4
|
rexbidv |
|- ( s = S -> ( E. g e. ( ~P X i^i Fin ) s = ( F ` g ) <-> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) ) ) |
6 |
5
|
rspcva |
|- ( ( S e. C /\ A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) ) -> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) ) |
7 |
3 6
|
sylan2 |
|- ( ( S e. C /\ C e. ( NoeACS ` X ) ) -> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) ) |
8 |
7
|
ancoms |
|- ( ( C e. ( NoeACS ` X ) /\ S e. C ) -> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) ) |