Metamath Proof Explorer


Theorem nacsfg

Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f
|- F = ( mrCls ` C )
Assertion nacsfg
|- ( ( C e. ( NoeACS ` X ) /\ S e. C ) -> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) )

Proof

Step Hyp Ref Expression
1 isnacs.f
 |-  F = ( mrCls ` C )
2 1 isnacs
 |-  ( C e. ( NoeACS ` X ) <-> ( C e. ( ACS ` X ) /\ A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) ) )
3 2 simprbi
 |-  ( C e. ( NoeACS ` X ) -> A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) )
4 eqeq1
 |-  ( s = S -> ( s = ( F ` g ) <-> S = ( F ` g ) ) )
5 4 rexbidv
 |-  ( s = S -> ( E. g e. ( ~P X i^i Fin ) s = ( F ` g ) <-> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) ) )
6 5 rspcva
 |-  ( ( S e. C /\ A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) ) -> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) )
7 3 6 sylan2
 |-  ( ( S e. C /\ C e. ( NoeACS ` X ) ) -> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) )
8 7 ancoms
 |-  ( ( C e. ( NoeACS ` X ) /\ S e. C ) -> E. g e. ( ~P X i^i Fin ) S = ( F ` g ) )