Step |
Hyp |
Ref |
Expression |
1 |
|
naddcom |
|- ( ( B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) |
2 |
1
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) |
3 |
2
|
oveq2d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A +no ( B +no C ) ) = ( A +no ( C +no B ) ) ) |
4 |
|
naddass |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( A +no ( B +no C ) ) ) |
5 |
|
naddass |
|- ( ( A e. On /\ C e. On /\ B e. On ) -> ( ( A +no C ) +no B ) = ( A +no ( C +no B ) ) ) |
6 |
5
|
3com23 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no C ) +no B ) = ( A +no ( C +no B ) ) ) |
7 |
3 4 6
|
3eqtr4d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) ) |