| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( a = c -> ( a +no b ) = ( c +no b ) ) |
| 2 |
1
|
eleq1d |
|- ( a = c -> ( ( a +no b ) e. On <-> ( c +no b ) e. On ) ) |
| 3 |
|
sneq |
|- ( a = c -> { a } = { c } ) |
| 4 |
3
|
xpeq1d |
|- ( a = c -> ( { a } X. b ) = ( { c } X. b ) ) |
| 5 |
4
|
imaeq2d |
|- ( a = c -> ( +no " ( { a } X. b ) ) = ( +no " ( { c } X. b ) ) ) |
| 6 |
5
|
sseq1d |
|- ( a = c -> ( ( +no " ( { a } X. b ) ) C_ x <-> ( +no " ( { c } X. b ) ) C_ x ) ) |
| 7 |
|
xpeq1 |
|- ( a = c -> ( a X. { b } ) = ( c X. { b } ) ) |
| 8 |
7
|
imaeq2d |
|- ( a = c -> ( +no " ( a X. { b } ) ) = ( +no " ( c X. { b } ) ) ) |
| 9 |
8
|
sseq1d |
|- ( a = c -> ( ( +no " ( a X. { b } ) ) C_ x <-> ( +no " ( c X. { b } ) ) C_ x ) ) |
| 10 |
6 9
|
anbi12d |
|- ( a = c -> ( ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) <-> ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) ) ) |
| 11 |
10
|
rabbidv |
|- ( a = c -> { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } = { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) |
| 12 |
11
|
inteqd |
|- ( a = c -> |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) |
| 13 |
1 12
|
eqeq12d |
|- ( a = c -> ( ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } <-> ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) ) |
| 14 |
2 13
|
anbi12d |
|- ( a = c -> ( ( ( a +no b ) e. On /\ ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) <-> ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) ) ) |
| 15 |
|
oveq2 |
|- ( b = d -> ( c +no b ) = ( c +no d ) ) |
| 16 |
15
|
eleq1d |
|- ( b = d -> ( ( c +no b ) e. On <-> ( c +no d ) e. On ) ) |
| 17 |
|
xpeq2 |
|- ( b = d -> ( { c } X. b ) = ( { c } X. d ) ) |
| 18 |
17
|
imaeq2d |
|- ( b = d -> ( +no " ( { c } X. b ) ) = ( +no " ( { c } X. d ) ) ) |
| 19 |
18
|
sseq1d |
|- ( b = d -> ( ( +no " ( { c } X. b ) ) C_ x <-> ( +no " ( { c } X. d ) ) C_ x ) ) |
| 20 |
|
sneq |
|- ( b = d -> { b } = { d } ) |
| 21 |
20
|
xpeq2d |
|- ( b = d -> ( c X. { b } ) = ( c X. { d } ) ) |
| 22 |
21
|
imaeq2d |
|- ( b = d -> ( +no " ( c X. { b } ) ) = ( +no " ( c X. { d } ) ) ) |
| 23 |
22
|
sseq1d |
|- ( b = d -> ( ( +no " ( c X. { b } ) ) C_ x <-> ( +no " ( c X. { d } ) ) C_ x ) ) |
| 24 |
19 23
|
anbi12d |
|- ( b = d -> ( ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) <-> ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) ) ) |
| 25 |
24
|
rabbidv |
|- ( b = d -> { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } = { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) |
| 26 |
25
|
inteqd |
|- ( b = d -> |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) |
| 27 |
15 26
|
eqeq12d |
|- ( b = d -> ( ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } <-> ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) ) |
| 28 |
16 27
|
anbi12d |
|- ( b = d -> ( ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) <-> ( ( c +no d ) e. On /\ ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) ) ) |
| 29 |
|
oveq1 |
|- ( a = c -> ( a +no d ) = ( c +no d ) ) |
| 30 |
29
|
eleq1d |
|- ( a = c -> ( ( a +no d ) e. On <-> ( c +no d ) e. On ) ) |
| 31 |
3
|
xpeq1d |
|- ( a = c -> ( { a } X. d ) = ( { c } X. d ) ) |
| 32 |
31
|
imaeq2d |
|- ( a = c -> ( +no " ( { a } X. d ) ) = ( +no " ( { c } X. d ) ) ) |
| 33 |
32
|
sseq1d |
|- ( a = c -> ( ( +no " ( { a } X. d ) ) C_ x <-> ( +no " ( { c } X. d ) ) C_ x ) ) |
| 34 |
|
xpeq1 |
|- ( a = c -> ( a X. { d } ) = ( c X. { d } ) ) |
| 35 |
34
|
imaeq2d |
|- ( a = c -> ( +no " ( a X. { d } ) ) = ( +no " ( c X. { d } ) ) ) |
| 36 |
35
|
sseq1d |
|- ( a = c -> ( ( +no " ( a X. { d } ) ) C_ x <-> ( +no " ( c X. { d } ) ) C_ x ) ) |
| 37 |
33 36
|
anbi12d |
|- ( a = c -> ( ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) <-> ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) ) ) |
| 38 |
37
|
rabbidv |
|- ( a = c -> { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } = { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) |
| 39 |
38
|
inteqd |
|- ( a = c -> |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) |
| 40 |
29 39
|
eqeq12d |
|- ( a = c -> ( ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } <-> ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) ) |
| 41 |
30 40
|
anbi12d |
|- ( a = c -> ( ( ( a +no d ) e. On /\ ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } ) <-> ( ( c +no d ) e. On /\ ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) ) ) |
| 42 |
|
oveq1 |
|- ( a = A -> ( a +no b ) = ( A +no b ) ) |
| 43 |
42
|
eleq1d |
|- ( a = A -> ( ( a +no b ) e. On <-> ( A +no b ) e. On ) ) |
| 44 |
|
sneq |
|- ( a = A -> { a } = { A } ) |
| 45 |
44
|
xpeq1d |
|- ( a = A -> ( { a } X. b ) = ( { A } X. b ) ) |
| 46 |
45
|
imaeq2d |
|- ( a = A -> ( +no " ( { a } X. b ) ) = ( +no " ( { A } X. b ) ) ) |
| 47 |
46
|
sseq1d |
|- ( a = A -> ( ( +no " ( { a } X. b ) ) C_ x <-> ( +no " ( { A } X. b ) ) C_ x ) ) |
| 48 |
|
xpeq1 |
|- ( a = A -> ( a X. { b } ) = ( A X. { b } ) ) |
| 49 |
48
|
imaeq2d |
|- ( a = A -> ( +no " ( a X. { b } ) ) = ( +no " ( A X. { b } ) ) ) |
| 50 |
49
|
sseq1d |
|- ( a = A -> ( ( +no " ( a X. { b } ) ) C_ x <-> ( +no " ( A X. { b } ) ) C_ x ) ) |
| 51 |
47 50
|
anbi12d |
|- ( a = A -> ( ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) <-> ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) ) ) |
| 52 |
51
|
rabbidv |
|- ( a = A -> { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } = { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } ) |
| 53 |
52
|
inteqd |
|- ( a = A -> |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } ) |
| 54 |
42 53
|
eqeq12d |
|- ( a = A -> ( ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } <-> ( A +no b ) = |^| { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } ) ) |
| 55 |
43 54
|
anbi12d |
|- ( a = A -> ( ( ( a +no b ) e. On /\ ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) <-> ( ( A +no b ) e. On /\ ( A +no b ) = |^| { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } ) ) ) |
| 56 |
|
oveq2 |
|- ( b = B -> ( A +no b ) = ( A +no B ) ) |
| 57 |
56
|
eleq1d |
|- ( b = B -> ( ( A +no b ) e. On <-> ( A +no B ) e. On ) ) |
| 58 |
|
xpeq2 |
|- ( b = B -> ( { A } X. b ) = ( { A } X. B ) ) |
| 59 |
58
|
imaeq2d |
|- ( b = B -> ( +no " ( { A } X. b ) ) = ( +no " ( { A } X. B ) ) ) |
| 60 |
59
|
sseq1d |
|- ( b = B -> ( ( +no " ( { A } X. b ) ) C_ x <-> ( +no " ( { A } X. B ) ) C_ x ) ) |
| 61 |
|
sneq |
|- ( b = B -> { b } = { B } ) |
| 62 |
61
|
xpeq2d |
|- ( b = B -> ( A X. { b } ) = ( A X. { B } ) ) |
| 63 |
62
|
imaeq2d |
|- ( b = B -> ( +no " ( A X. { b } ) ) = ( +no " ( A X. { B } ) ) ) |
| 64 |
63
|
sseq1d |
|- ( b = B -> ( ( +no " ( A X. { b } ) ) C_ x <-> ( +no " ( A X. { B } ) ) C_ x ) ) |
| 65 |
60 64
|
anbi12d |
|- ( b = B -> ( ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) <-> ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) ) ) |
| 66 |
65
|
rabbidv |
|- ( b = B -> { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } = { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) |
| 67 |
66
|
inteqd |
|- ( b = B -> |^| { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) |
| 68 |
56 67
|
eqeq12d |
|- ( b = B -> ( ( A +no b ) = |^| { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } <-> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) ) |
| 69 |
57 68
|
anbi12d |
|- ( b = B -> ( ( ( A +no b ) e. On /\ ( A +no b ) = |^| { x e. On | ( ( +no " ( { A } X. b ) ) C_ x /\ ( +no " ( A X. { b } ) ) C_ x ) } ) <-> ( ( A +no B ) e. On /\ ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) ) ) |
| 70 |
|
simpl |
|- ( ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) -> ( c +no b ) e. On ) |
| 71 |
70
|
ralimi |
|- ( A. c e. a ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) -> A. c e. a ( c +no b ) e. On ) |
| 72 |
71
|
3ad2ant2 |
|- ( ( A. c e. a A. d e. b ( ( c +no d ) e. On /\ ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) /\ A. c e. a ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) /\ A. d e. b ( ( a +no d ) e. On /\ ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } ) ) -> A. c e. a ( c +no b ) e. On ) |
| 73 |
|
simpl |
|- ( ( ( a +no d ) e. On /\ ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } ) -> ( a +no d ) e. On ) |
| 74 |
73
|
ralimi |
|- ( A. d e. b ( ( a +no d ) e. On /\ ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } ) -> A. d e. b ( a +no d ) e. On ) |
| 75 |
74
|
3ad2ant3 |
|- ( ( A. c e. a A. d e. b ( ( c +no d ) e. On /\ ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) /\ A. c e. a ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) /\ A. d e. b ( ( a +no d ) e. On /\ ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } ) ) -> A. d e. b ( a +no d ) e. On ) |
| 76 |
72 75
|
jca |
|- ( ( A. c e. a A. d e. b ( ( c +no d ) e. On /\ ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) /\ A. c e. a ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) /\ A. d e. b ( ( a +no d ) e. On /\ ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } ) ) -> ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) |
| 77 |
|
df-nadd |
|- +no = frecs ( { <. p , q >. | ( p e. ( On X. On ) /\ q e. ( On X. On ) /\ ( ( ( 1st ` p ) _E ( 1st ` q ) \/ ( 1st ` p ) = ( 1st ` q ) ) /\ ( ( 2nd ` p ) _E ( 2nd ` q ) \/ ( 2nd ` p ) = ( 2nd ` q ) ) /\ p =/= q ) ) } , ( On X. On ) , ( t e. _V , f e. _V |-> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } ) ) |
| 78 |
77
|
on2recsov |
|- ( ( a e. On /\ b e. On ) -> ( a +no b ) = ( <. a , b >. ( t e. _V , f e. _V |-> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } ) ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) ) ) |
| 79 |
78
|
adantr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( a +no b ) = ( <. a , b >. ( t e. _V , f e. _V |-> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } ) ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) ) ) |
| 80 |
|
opex |
|- <. a , b >. e. _V |
| 81 |
|
naddfn |
|- +no Fn ( On X. On ) |
| 82 |
|
fnfun |
|- ( +no Fn ( On X. On ) -> Fun +no ) |
| 83 |
81 82
|
ax-mp |
|- Fun +no |
| 84 |
|
vex |
|- a e. _V |
| 85 |
84
|
sucex |
|- suc a e. _V |
| 86 |
|
vex |
|- b e. _V |
| 87 |
86
|
sucex |
|- suc b e. _V |
| 88 |
85 87
|
xpex |
|- ( suc a X. suc b ) e. _V |
| 89 |
88
|
difexi |
|- ( ( suc a X. suc b ) \ { <. a , b >. } ) e. _V |
| 90 |
|
resfunexg |
|- ( ( Fun +no /\ ( ( suc a X. suc b ) \ { <. a , b >. } ) e. _V ) -> ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) e. _V ) |
| 91 |
83 89 90
|
mp2an |
|- ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) e. _V |
| 92 |
|
eloni |
|- ( b e. On -> Ord b ) |
| 93 |
92
|
ad2antlr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> Ord b ) |
| 94 |
|
ordirr |
|- ( Ord b -> -. b e. b ) |
| 95 |
93 94
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> -. b e. b ) |
| 96 |
95
|
olcd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( -. a e. { a } \/ -. b e. b ) ) |
| 97 |
|
ianor |
|- ( -. ( a e. { a } /\ b e. b ) <-> ( -. a e. { a } \/ -. b e. b ) ) |
| 98 |
|
opelxp |
|- ( <. a , b >. e. ( { a } X. b ) <-> ( a e. { a } /\ b e. b ) ) |
| 99 |
97 98
|
xchnxbir |
|- ( -. <. a , b >. e. ( { a } X. b ) <-> ( -. a e. { a } \/ -. b e. b ) ) |
| 100 |
96 99
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> -. <. a , b >. e. ( { a } X. b ) ) |
| 101 |
84
|
sucid |
|- a e. suc a |
| 102 |
|
snssi |
|- ( a e. suc a -> { a } C_ suc a ) |
| 103 |
101 102
|
ax-mp |
|- { a } C_ suc a |
| 104 |
|
sssucid |
|- b C_ suc b |
| 105 |
|
xpss12 |
|- ( ( { a } C_ suc a /\ b C_ suc b ) -> ( { a } X. b ) C_ ( suc a X. suc b ) ) |
| 106 |
103 104 105
|
mp2an |
|- ( { a } X. b ) C_ ( suc a X. suc b ) |
| 107 |
|
ssdifsn |
|- ( ( { a } X. b ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) <-> ( ( { a } X. b ) C_ ( suc a X. suc b ) /\ -. <. a , b >. e. ( { a } X. b ) ) ) |
| 108 |
106 107
|
mpbiran |
|- ( ( { a } X. b ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) <-> -. <. a , b >. e. ( { a } X. b ) ) |
| 109 |
100 108
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( { a } X. b ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) ) |
| 110 |
|
resima2 |
|- ( ( { a } X. b ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) -> ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) = ( +no " ( { a } X. b ) ) ) |
| 111 |
109 110
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) = ( +no " ( { a } X. b ) ) ) |
| 112 |
111
|
sseq1d |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x <-> ( +no " ( { a } X. b ) ) C_ x ) ) |
| 113 |
|
eloni |
|- ( a e. On -> Ord a ) |
| 114 |
113
|
ad2antrr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> Ord a ) |
| 115 |
|
ordirr |
|- ( Ord a -> -. a e. a ) |
| 116 |
114 115
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> -. a e. a ) |
| 117 |
116
|
orcd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( -. a e. a \/ -. b e. { b } ) ) |
| 118 |
|
ianor |
|- ( -. ( a e. a /\ b e. { b } ) <-> ( -. a e. a \/ -. b e. { b } ) ) |
| 119 |
|
opelxp |
|- ( <. a , b >. e. ( a X. { b } ) <-> ( a e. a /\ b e. { b } ) ) |
| 120 |
118 119
|
xchnxbir |
|- ( -. <. a , b >. e. ( a X. { b } ) <-> ( -. a e. a \/ -. b e. { b } ) ) |
| 121 |
117 120
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> -. <. a , b >. e. ( a X. { b } ) ) |
| 122 |
|
sssucid |
|- a C_ suc a |
| 123 |
86
|
sucid |
|- b e. suc b |
| 124 |
|
snssi |
|- ( b e. suc b -> { b } C_ suc b ) |
| 125 |
123 124
|
ax-mp |
|- { b } C_ suc b |
| 126 |
|
xpss12 |
|- ( ( a C_ suc a /\ { b } C_ suc b ) -> ( a X. { b } ) C_ ( suc a X. suc b ) ) |
| 127 |
122 125 126
|
mp2an |
|- ( a X. { b } ) C_ ( suc a X. suc b ) |
| 128 |
|
ssdifsn |
|- ( ( a X. { b } ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) <-> ( ( a X. { b } ) C_ ( suc a X. suc b ) /\ -. <. a , b >. e. ( a X. { b } ) ) ) |
| 129 |
127 128
|
mpbiran |
|- ( ( a X. { b } ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) <-> -. <. a , b >. e. ( a X. { b } ) ) |
| 130 |
121 129
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( a X. { b } ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) ) |
| 131 |
|
resima2 |
|- ( ( a X. { b } ) C_ ( ( suc a X. suc b ) \ { <. a , b >. } ) -> ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) = ( +no " ( a X. { b } ) ) ) |
| 132 |
130 131
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) = ( +no " ( a X. { b } ) ) ) |
| 133 |
132
|
sseq1d |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x <-> ( +no " ( a X. { b } ) ) C_ x ) ) |
| 134 |
112 133
|
anbi12d |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) <-> ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) ) ) |
| 135 |
134
|
rabbidv |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } = { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) |
| 136 |
135
|
inteqd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> |^| { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) |
| 137 |
|
simprr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> A. d e. b ( a +no d ) e. On ) |
| 138 |
|
oveq1 |
|- ( t = a -> ( t +no d ) = ( a +no d ) ) |
| 139 |
138
|
eleq1d |
|- ( t = a -> ( ( t +no d ) e. On <-> ( a +no d ) e. On ) ) |
| 140 |
139
|
ralbidv |
|- ( t = a -> ( A. d e. b ( t +no d ) e. On <-> A. d e. b ( a +no d ) e. On ) ) |
| 141 |
84 140
|
ralsn |
|- ( A. t e. { a } A. d e. b ( t +no d ) e. On <-> A. d e. b ( a +no d ) e. On ) |
| 142 |
137 141
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> A. t e. { a } A. d e. b ( t +no d ) e. On ) |
| 143 |
|
snssi |
|- ( a e. On -> { a } C_ On ) |
| 144 |
|
onss |
|- ( b e. On -> b C_ On ) |
| 145 |
|
xpss12 |
|- ( ( { a } C_ On /\ b C_ On ) -> ( { a } X. b ) C_ ( On X. On ) ) |
| 146 |
143 144 145
|
syl2an |
|- ( ( a e. On /\ b e. On ) -> ( { a } X. b ) C_ ( On X. On ) ) |
| 147 |
146
|
adantr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( { a } X. b ) C_ ( On X. On ) ) |
| 148 |
81
|
fndmi |
|- dom +no = ( On X. On ) |
| 149 |
147 148
|
sseqtrrdi |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( { a } X. b ) C_ dom +no ) |
| 150 |
|
funimassov |
|- ( ( Fun +no /\ ( { a } X. b ) C_ dom +no ) -> ( ( +no " ( { a } X. b ) ) C_ On <-> A. t e. { a } A. d e. b ( t +no d ) e. On ) ) |
| 151 |
83 149 150
|
sylancr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( +no " ( { a } X. b ) ) C_ On <-> A. t e. { a } A. d e. b ( t +no d ) e. On ) ) |
| 152 |
142 151
|
mpbird |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( +no " ( { a } X. b ) ) C_ On ) |
| 153 |
|
simprl |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> A. c e. a ( c +no b ) e. On ) |
| 154 |
|
oveq2 |
|- ( t = b -> ( c +no t ) = ( c +no b ) ) |
| 155 |
154
|
eleq1d |
|- ( t = b -> ( ( c +no t ) e. On <-> ( c +no b ) e. On ) ) |
| 156 |
86 155
|
ralsn |
|- ( A. t e. { b } ( c +no t ) e. On <-> ( c +no b ) e. On ) |
| 157 |
156
|
ralbii |
|- ( A. c e. a A. t e. { b } ( c +no t ) e. On <-> A. c e. a ( c +no b ) e. On ) |
| 158 |
153 157
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> A. c e. a A. t e. { b } ( c +no t ) e. On ) |
| 159 |
|
onss |
|- ( a e. On -> a C_ On ) |
| 160 |
|
snssi |
|- ( b e. On -> { b } C_ On ) |
| 161 |
|
xpss12 |
|- ( ( a C_ On /\ { b } C_ On ) -> ( a X. { b } ) C_ ( On X. On ) ) |
| 162 |
159 160 161
|
syl2an |
|- ( ( a e. On /\ b e. On ) -> ( a X. { b } ) C_ ( On X. On ) ) |
| 163 |
162
|
adantr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( a X. { b } ) C_ ( On X. On ) ) |
| 164 |
163 148
|
sseqtrrdi |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( a X. { b } ) C_ dom +no ) |
| 165 |
|
funimassov |
|- ( ( Fun +no /\ ( a X. { b } ) C_ dom +no ) -> ( ( +no " ( a X. { b } ) ) C_ On <-> A. c e. a A. t e. { b } ( c +no t ) e. On ) ) |
| 166 |
83 164 165
|
sylancr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( +no " ( a X. { b } ) ) C_ On <-> A. c e. a A. t e. { b } ( c +no t ) e. On ) ) |
| 167 |
158 166
|
mpbird |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( +no " ( a X. { b } ) ) C_ On ) |
| 168 |
152 167
|
unssd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) C_ On ) |
| 169 |
|
ssorduni |
|- ( ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) C_ On -> Ord U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) |
| 170 |
168 169
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> Ord U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) |
| 171 |
|
vsnex |
|- { a } e. _V |
| 172 |
171 86
|
xpex |
|- ( { a } X. b ) e. _V |
| 173 |
|
funimaexg |
|- ( ( Fun +no /\ ( { a } X. b ) e. _V ) -> ( +no " ( { a } X. b ) ) e. _V ) |
| 174 |
83 172 173
|
mp2an |
|- ( +no " ( { a } X. b ) ) e. _V |
| 175 |
|
vsnex |
|- { b } e. _V |
| 176 |
84 175
|
xpex |
|- ( a X. { b } ) e. _V |
| 177 |
|
funimaexg |
|- ( ( Fun +no /\ ( a X. { b } ) e. _V ) -> ( +no " ( a X. { b } ) ) e. _V ) |
| 178 |
83 176 177
|
mp2an |
|- ( +no " ( a X. { b } ) ) e. _V |
| 179 |
174 178
|
unex |
|- ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. _V |
| 180 |
179
|
uniex |
|- U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. _V |
| 181 |
180
|
elon |
|- ( U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. On <-> Ord U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) |
| 182 |
170 181
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. On ) |
| 183 |
|
onsucb |
|- ( U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. On <-> suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. On ) |
| 184 |
182 183
|
sylib |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. On ) |
| 185 |
|
onsucuni |
|- ( ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) C_ On -> ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) |
| 186 |
168 185
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) |
| 187 |
186
|
unssad |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( +no " ( { a } X. b ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) |
| 188 |
186
|
unssbd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( +no " ( a X. { b } ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) |
| 189 |
|
sseq2 |
|- ( x = suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) -> ( ( +no " ( { a } X. b ) ) C_ x <-> ( +no " ( { a } X. b ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) ) |
| 190 |
|
sseq2 |
|- ( x = suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) -> ( ( +no " ( a X. { b } ) ) C_ x <-> ( +no " ( a X. { b } ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) ) |
| 191 |
189 190
|
anbi12d |
|- ( x = suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) -> ( ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) <-> ( ( +no " ( { a } X. b ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) /\ ( +no " ( a X. { b } ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) ) ) |
| 192 |
191
|
rspcev |
|- ( ( suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) e. On /\ ( ( +no " ( { a } X. b ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) /\ ( +no " ( a X. { b } ) ) C_ suc U. ( ( +no " ( { a } X. b ) ) u. ( +no " ( a X. { b } ) ) ) ) ) -> E. x e. On ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) ) |
| 193 |
184 187 188 192
|
syl12anc |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> E. x e. On ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) ) |
| 194 |
|
onintrab2 |
|- ( E. x e. On ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) <-> |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } e. On ) |
| 195 |
193 194
|
sylib |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } e. On ) |
| 196 |
136 195
|
eqeltrd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> |^| { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } e. On ) |
| 197 |
84 86
|
op1std |
|- ( t = <. a , b >. -> ( 1st ` t ) = a ) |
| 198 |
197
|
sneqd |
|- ( t = <. a , b >. -> { ( 1st ` t ) } = { a } ) |
| 199 |
84 86
|
op2ndd |
|- ( t = <. a , b >. -> ( 2nd ` t ) = b ) |
| 200 |
198 199
|
xpeq12d |
|- ( t = <. a , b >. -> ( { ( 1st ` t ) } X. ( 2nd ` t ) ) = ( { a } X. b ) ) |
| 201 |
200
|
imaeq2d |
|- ( t = <. a , b >. -> ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) = ( f " ( { a } X. b ) ) ) |
| 202 |
201
|
sseq1d |
|- ( t = <. a , b >. -> ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x <-> ( f " ( { a } X. b ) ) C_ x ) ) |
| 203 |
199
|
sneqd |
|- ( t = <. a , b >. -> { ( 2nd ` t ) } = { b } ) |
| 204 |
197 203
|
xpeq12d |
|- ( t = <. a , b >. -> ( ( 1st ` t ) X. { ( 2nd ` t ) } ) = ( a X. { b } ) ) |
| 205 |
204
|
imaeq2d |
|- ( t = <. a , b >. -> ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) = ( f " ( a X. { b } ) ) ) |
| 206 |
205
|
sseq1d |
|- ( t = <. a , b >. -> ( ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x <-> ( f " ( a X. { b } ) ) C_ x ) ) |
| 207 |
202 206
|
anbi12d |
|- ( t = <. a , b >. -> ( ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) <-> ( ( f " ( { a } X. b ) ) C_ x /\ ( f " ( a X. { b } ) ) C_ x ) ) ) |
| 208 |
207
|
rabbidv |
|- ( t = <. a , b >. -> { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } = { x e. On | ( ( f " ( { a } X. b ) ) C_ x /\ ( f " ( a X. { b } ) ) C_ x ) } ) |
| 209 |
208
|
inteqd |
|- ( t = <. a , b >. -> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } = |^| { x e. On | ( ( f " ( { a } X. b ) ) C_ x /\ ( f " ( a X. { b } ) ) C_ x ) } ) |
| 210 |
|
imaeq1 |
|- ( f = ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) -> ( f " ( { a } X. b ) ) = ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) ) |
| 211 |
210
|
sseq1d |
|- ( f = ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) -> ( ( f " ( { a } X. b ) ) C_ x <-> ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x ) ) |
| 212 |
|
imaeq1 |
|- ( f = ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) -> ( f " ( a X. { b } ) ) = ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) ) |
| 213 |
212
|
sseq1d |
|- ( f = ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) -> ( ( f " ( a X. { b } ) ) C_ x <-> ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) ) |
| 214 |
211 213
|
anbi12d |
|- ( f = ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) -> ( ( ( f " ( { a } X. b ) ) C_ x /\ ( f " ( a X. { b } ) ) C_ x ) <-> ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) ) ) |
| 215 |
214
|
rabbidv |
|- ( f = ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) -> { x e. On | ( ( f " ( { a } X. b ) ) C_ x /\ ( f " ( a X. { b } ) ) C_ x ) } = { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } ) |
| 216 |
215
|
inteqd |
|- ( f = ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) -> |^| { x e. On | ( ( f " ( { a } X. b ) ) C_ x /\ ( f " ( a X. { b } ) ) C_ x ) } = |^| { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } ) |
| 217 |
|
eqid |
|- ( t e. _V , f e. _V |-> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } ) = ( t e. _V , f e. _V |-> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } ) |
| 218 |
209 216 217
|
ovmpog |
|- ( ( <. a , b >. e. _V /\ ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) e. _V /\ |^| { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } e. On ) -> ( <. a , b >. ( t e. _V , f e. _V |-> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } ) ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) ) = |^| { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } ) |
| 219 |
80 91 196 218
|
mp3an12i |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( <. a , b >. ( t e. _V , f e. _V |-> |^| { x e. On | ( ( f " ( { ( 1st ` t ) } X. ( 2nd ` t ) ) ) C_ x /\ ( f " ( ( 1st ` t ) X. { ( 2nd ` t ) } ) ) C_ x ) } ) ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) ) = |^| { x e. On | ( ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( { a } X. b ) ) C_ x /\ ( ( +no |` ( ( suc a X. suc b ) \ { <. a , b >. } ) ) " ( a X. { b } ) ) C_ x ) } ) |
| 220 |
79 219 136
|
3eqtrd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) |
| 221 |
220 195
|
eqeltrd |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( a +no b ) e. On ) |
| 222 |
221 220
|
jca |
|- ( ( ( a e. On /\ b e. On ) /\ ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) ) -> ( ( a +no b ) e. On /\ ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) ) |
| 223 |
222
|
ex |
|- ( ( a e. On /\ b e. On ) -> ( ( A. c e. a ( c +no b ) e. On /\ A. d e. b ( a +no d ) e. On ) -> ( ( a +no b ) e. On /\ ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) ) ) |
| 224 |
76 223
|
syl5 |
|- ( ( a e. On /\ b e. On ) -> ( ( A. c e. a A. d e. b ( ( c +no d ) e. On /\ ( c +no d ) = |^| { x e. On | ( ( +no " ( { c } X. d ) ) C_ x /\ ( +no " ( c X. { d } ) ) C_ x ) } ) /\ A. c e. a ( ( c +no b ) e. On /\ ( c +no b ) = |^| { x e. On | ( ( +no " ( { c } X. b ) ) C_ x /\ ( +no " ( c X. { b } ) ) C_ x ) } ) /\ A. d e. b ( ( a +no d ) e. On /\ ( a +no d ) = |^| { x e. On | ( ( +no " ( { a } X. d ) ) C_ x /\ ( +no " ( a X. { d } ) ) C_ x ) } ) ) -> ( ( a +no b ) e. On /\ ( a +no b ) = |^| { x e. On | ( ( +no " ( { a } X. b ) ) C_ x /\ ( +no " ( a X. { b } ) ) C_ x ) } ) ) ) |
| 225 |
14 28 41 55 69 224
|
on2ind |
|- ( ( A e. On /\ B e. On ) -> ( ( A +no B ) e. On /\ ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) ) |