Step |
Hyp |
Ref |
Expression |
1 |
|
naddfn |
|- +no Fn ( On X. On ) |
2 |
|
naddcl |
|- ( ( y e. On /\ z e. On ) -> ( y +no z ) e. On ) |
3 |
2
|
rgen2 |
|- A. y e. On A. z e. On ( y +no z ) e. On |
4 |
|
fveq2 |
|- ( x = <. y , z >. -> ( +no ` x ) = ( +no ` <. y , z >. ) ) |
5 |
|
df-ov |
|- ( y +no z ) = ( +no ` <. y , z >. ) |
6 |
4 5
|
eqtr4di |
|- ( x = <. y , z >. -> ( +no ` x ) = ( y +no z ) ) |
7 |
6
|
eleq1d |
|- ( x = <. y , z >. -> ( ( +no ` x ) e. On <-> ( y +no z ) e. On ) ) |
8 |
7
|
ralxp |
|- ( A. x e. ( On X. On ) ( +no ` x ) e. On <-> A. y e. On A. z e. On ( y +no z ) e. On ) |
9 |
3 8
|
mpbir |
|- A. x e. ( On X. On ) ( +no ` x ) e. On |
10 |
|
ffnfv |
|- ( +no : ( On X. On ) --> On <-> ( +no Fn ( On X. On ) /\ A. x e. ( On X. On ) ( +no ` x ) e. On ) ) |
11 |
1 9 10
|
mpbir2an |
|- +no : ( On X. On ) --> On |