Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | naddword2 | |- ( ( A e. On /\ B e. On ) -> A C_ ( B +no A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddword1 | |- ( ( A e. On /\ B e. On ) -> A C_ ( A +no B ) ) |
|
2 | naddcom | |- ( ( A e. On /\ B e. On ) -> ( A +no B ) = ( B +no A ) ) |
|
3 | 1 2 | sseqtrd | |- ( ( A e. On /\ B e. On ) -> A C_ ( B +no A ) ) |