Metamath Proof Explorer


Theorem naev

Description: If some set variables can assume different values, then any two distinct set variables cannot always be the same. (Contributed by Wolf Lammen, 10-Aug-2019)

Ref Expression
Assertion naev
|- ( -. A. x x = y -> -. A. u u = v )

Proof

Step Hyp Ref Expression
1 aev
 |-  ( A. u u = v -> A. x x = y )
2 1 con3i
 |-  ( -. A. x x = y -> -. A. u u = v )