Metamath Proof Explorer


Theorem naev2

Description: Generalization of hbnaev . (Contributed by Wolf Lammen, 9-Apr-2021)

Ref Expression
Assertion naev2
|- ( -. A. x x = y -> A. z -. A. t t = u )

Proof

Step Hyp Ref Expression
1 naev
 |-  ( -. A. x x = y -> -. A. v v = w )
2 ax-5
 |-  ( -. A. v v = w -> A. z -. A. v v = w )
3 naev
 |-  ( -. A. v v = w -> -. A. t t = u )
4 3 alimi
 |-  ( A. z -. A. v v = w -> A. z -. A. t t = u )
5 1 2 4 3syl
 |-  ( -. A. x x = y -> A. z -. A. t t = u )