Metamath Proof Explorer


Theorem naim1i

Description: Constructor rule for -/\ . (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Hypotheses naim1i.1
|- ( ph -> ps )
naim1i.2
|- ( ps -/\ ch )
Assertion naim1i
|- ( ph -/\ ch )

Proof

Step Hyp Ref Expression
1 naim1i.1
 |-  ( ph -> ps )
2 naim1i.2
 |-  ( ps -/\ ch )
3 naim1
 |-  ( ( ph -> ps ) -> ( ( ps -/\ ch ) -> ( ph -/\ ch ) ) )
4 1 2 3 mp2
 |-  ( ph -/\ ch )