Metamath Proof Explorer


Theorem naim2i

Description: Constructor rule for -/\ . (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Hypotheses naim2i.1
|- ( ph -> ps )
naim2i.2
|- ( ch -/\ ps )
Assertion naim2i
|- ( ch -/\ ph )

Proof

Step Hyp Ref Expression
1 naim2i.1
 |-  ( ph -> ps )
2 naim2i.2
 |-  ( ch -/\ ps )
3 naim2
 |-  ( ( ph -> ps ) -> ( ( ch -/\ ps ) -> ( ch -/\ ph ) ) )
4 1 2 3 mp2
 |-  ( ch -/\ ph )