Description: Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | nan | |- ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp | |- ( ( ( ph /\ ps ) -> -. ch ) <-> ( ph -> ( ps -> -. ch ) ) ) |
|
2 | imnan | |- ( ( ps -> -. ch ) <-> -. ( ps /\ ch ) ) |
|
3 | 2 | imbi2i | |- ( ( ph -> ( ps -> -. ch ) ) <-> ( ph -> -. ( ps /\ ch ) ) ) |
4 | 1 3 | bitr2i | |- ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) ) |