Metamath Proof Explorer


Theorem nan

Description: Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003)

Ref Expression
Assertion nan
|- ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) )

Proof

Step Hyp Ref Expression
1 impexp
 |-  ( ( ( ph /\ ps ) -> -. ch ) <-> ( ph -> ( ps -> -. ch ) ) )
2 imnan
 |-  ( ( ps -> -. ch ) <-> -. ( ps /\ ch ) )
3 2 imbi2i
 |-  ( ( ph -> ( ps -> -. ch ) ) <-> ( ph -> -. ( ps /\ ch ) ) )
4 1 3 bitr2i
 |-  ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) )