Description: Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nan | |- ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | impexp | |- ( ( ( ph /\ ps ) -> -. ch ) <-> ( ph -> ( ps -> -. ch ) ) ) | |
| 2 | imnan | |- ( ( ps -> -. ch ) <-> -. ( ps /\ ch ) ) | |
| 3 | 2 | imbi2i | |- ( ( ph -> ( ps -> -. ch ) ) <-> ( ph -> -. ( ps /\ ch ) ) ) | 
| 4 | 1 3 | bitr2i | |- ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) ) |