| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bicom1 |  |-  ( ( ph <-> ch ) -> ( ch <-> ph ) ) | 
						
							| 2 |  | nanbi2 |  |-  ( ( ph <-> ch ) -> ( ( ps -/\ ph ) <-> ( ps -/\ ch ) ) ) | 
						
							| 3 | 1 2 | nanbi12d |  |-  ( ( ph <-> ch ) -> ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) | 
						
							| 4 |  | nannan |  |-  ( ( ph -/\ ( ps -/\ ch ) ) <-> ( ph -> ( ps /\ ch ) ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ps /\ ch ) -> ch ) | 
						
							| 6 | 5 | imim2i |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ch ) ) | 
						
							| 7 | 4 6 | sylbi |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -> ( ph -> ch ) ) | 
						
							| 8 |  | nannan |  |-  ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ch -> ( ps /\ ph ) ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ps /\ ph ) -> ph ) | 
						
							| 10 | 9 | imim2i |  |-  ( ( ch -> ( ps /\ ph ) ) -> ( ch -> ph ) ) | 
						
							| 11 | 8 10 | sylbi |  |-  ( ( ch -/\ ( ps -/\ ph ) ) -> ( ch -> ph ) ) | 
						
							| 12 | 7 11 | impbid21d |  |-  ( ( ch -/\ ( ps -/\ ph ) ) -> ( ( ph -/\ ( ps -/\ ch ) ) -> ( ph <-> ch ) ) ) | 
						
							| 13 |  | nanan |  |-  ( ( ph /\ ( ps -/\ ch ) ) <-> -. ( ph -/\ ( ps -/\ ch ) ) ) | 
						
							| 14 |  | simpl |  |-  ( ( ph /\ ( ps -/\ ch ) ) -> ph ) | 
						
							| 15 | 13 14 | sylbir |  |-  ( -. ( ph -/\ ( ps -/\ ch ) ) -> ph ) | 
						
							| 16 |  | nanan |  |-  ( ( ch /\ ( ps -/\ ph ) ) <-> -. ( ch -/\ ( ps -/\ ph ) ) ) | 
						
							| 17 |  | simpl |  |-  ( ( ch /\ ( ps -/\ ph ) ) -> ch ) | 
						
							| 18 | 16 17 | sylbir |  |-  ( -. ( ch -/\ ( ps -/\ ph ) ) -> ch ) | 
						
							| 19 |  | pm5.1im |  |-  ( ph -> ( ch -> ( ph <-> ch ) ) ) | 
						
							| 20 | 15 18 19 | syl2imc |  |-  ( -. ( ch -/\ ( ps -/\ ph ) ) -> ( -. ( ph -/\ ( ps -/\ ch ) ) -> ( ph <-> ch ) ) ) | 
						
							| 21 | 12 20 | bija |  |-  ( ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) -> ( ph <-> ch ) ) | 
						
							| 22 | 3 21 | impbii |  |-  ( ( ph <-> ch ) <-> ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) | 
						
							| 23 |  | nancom |  |-  ( ( ps -/\ ph ) <-> ( ph -/\ ps ) ) | 
						
							| 24 | 23 | nanbi2i |  |-  ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ch -/\ ( ph -/\ ps ) ) ) | 
						
							| 25 |  | nancom |  |-  ( ( ch -/\ ( ph -/\ ps ) ) <-> ( ( ph -/\ ps ) -/\ ch ) ) | 
						
							| 26 | 24 25 | bitri |  |-  ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ( ph -/\ ps ) -/\ ch ) ) | 
						
							| 27 | 26 | bibi1i |  |-  ( ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) <-> ( ( ( ph -/\ ps ) -/\ ch ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) | 
						
							| 28 | 22 27 | bitri |  |-  ( ( ph <-> ch ) <-> ( ( ( ph -/\ ps ) -/\ ch ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) |