Step |
Hyp |
Ref |
Expression |
1 |
|
dfbi3 |
|- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
2 |
|
df-or |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( -. ( ph /\ ps ) -> ( -. ph /\ -. ps ) ) ) |
3 |
|
df-nan |
|- ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) ) |
4 |
3
|
bicomi |
|- ( -. ( ph /\ ps ) <-> ( ph -/\ ps ) ) |
5 |
|
nannot |
|- ( -. ph <-> ( ph -/\ ph ) ) |
6 |
|
nannot |
|- ( -. ps <-> ( ps -/\ ps ) ) |
7 |
5 6
|
anbi12i |
|- ( ( -. ph /\ -. ps ) <-> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
8 |
4 7
|
imbi12i |
|- ( ( -. ( ph /\ ps ) -> ( -. ph /\ -. ps ) ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) |
9 |
1 2 8
|
3bitri |
|- ( ( ph <-> ps ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) |
10 |
|
nannan |
|- ( ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) |
11 |
9 10
|
bitr4i |
|- ( ( ph <-> ps ) <-> ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) ) |