Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | nanbi12 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbi1 | |- ( ( ph <-> ps ) -> ( ( ph -/\ ch ) <-> ( ps -/\ ch ) ) ) |
|
2 | nanbi2 | |- ( ( ch <-> th ) -> ( ( ps -/\ ch ) <-> ( ps -/\ th ) ) ) |
|
3 | 1 2 | sylan9bb | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) ) |