Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nanbi12 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nanbi1 | |- ( ( ph <-> ps ) -> ( ( ph -/\ ch ) <-> ( ps -/\ ch ) ) ) | |
| 2 | nanbi2 | |- ( ( ch <-> th ) -> ( ( ps -/\ ch ) <-> ( ps -/\ th ) ) ) | |
| 3 | 1 2 | sylan9bb | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) ) |