Description: Join two logical equivalences with anti-conjunction. (Contributed by Scott Fenton, 2-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nanbid.1 | |- ( ph -> ( ps <-> ch ) ) | |
| nanbi12d.2 | |- ( ph -> ( th <-> ta ) ) | ||
| Assertion | nanbi12d | |- ( ph -> ( ( ps -/\ th ) <-> ( ch -/\ ta ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nanbid.1 | |- ( ph -> ( ps <-> ch ) ) | |
| 2 | nanbi12d.2 | |- ( ph -> ( th <-> ta ) ) | |
| 3 | nanbi12 | |- ( ( ( ps <-> ch ) /\ ( th <-> ta ) ) -> ( ( ps -/\ th ) <-> ( ch -/\ ta ) ) ) | |
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( ( ps -/\ th ) <-> ( ch -/\ ta ) ) ) |