Metamath Proof Explorer


Theorem nanbi1d

Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018)

Ref Expression
Hypothesis nanbid.1
|- ( ph -> ( ps <-> ch ) )
Assertion nanbi1d
|- ( ph -> ( ( ps -/\ th ) <-> ( ch -/\ th ) ) )

Proof

Step Hyp Ref Expression
1 nanbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 nanbi1
 |-  ( ( ps <-> ch ) -> ( ( ps -/\ th ) <-> ( ch -/\ th ) ) )
3 1 2 syl
 |-  ( ph -> ( ( ps -/\ th ) <-> ( ch -/\ th ) ) )