Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nanbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
Assertion | nanbi1d | |- ( ph -> ( ( ps -/\ th ) <-> ( ch -/\ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | nanbi1 | |- ( ( ps <-> ch ) -> ( ( ps -/\ th ) <-> ( ch -/\ th ) ) ) |
|
3 | 1 2 | syl | |- ( ph -> ( ( ps -/\ th ) <-> ( ch -/\ th ) ) ) |