Metamath Proof Explorer


Theorem nanor

Description: Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022)

Ref Expression
Assertion nanor
|- ( ( ph -/\ ps ) <-> ( -. ph \/ -. ps ) )

Proof

Step Hyp Ref Expression
1 df-nan
 |-  ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) )
2 ianor
 |-  ( -. ( ph /\ ps ) <-> ( -. ph \/ -. ps ) )
3 1 2 bitri
 |-  ( ( ph -/\ ps ) <-> ( -. ph \/ -. ps ) )