Step |
Hyp |
Ref |
Expression |
1 |
|
natrcl.1 |
|- N = ( C Nat D ) |
2 |
|
nat1st2nd.2 |
|- ( ph -> A e. ( F N G ) ) |
3 |
|
relfunc |
|- Rel ( C Func D ) |
4 |
1
|
natrcl |
|- ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
5 |
2 4
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
6 |
5
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
7 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
8 |
3 6 7
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
9 |
5
|
simprd |
|- ( ph -> G e. ( C Func D ) ) |
10 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
11 |
3 9 10
|
sylancr |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
12 |
8 11
|
oveq12d |
|- ( ph -> ( F N G ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
13 |
2 12
|
eleqtrd |
|- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |