| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natrcl.1 |  |-  N = ( C Nat D ) | 
						
							| 2 |  | nat1st2nd.2 |  |-  ( ph -> A e. ( F N G ) ) | 
						
							| 3 |  | relfunc |  |-  Rel ( C Func D ) | 
						
							| 4 | 1 | natrcl |  |-  ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) | 
						
							| 6 | 5 | simpld |  |-  ( ph -> F e. ( C Func D ) ) | 
						
							| 7 |  | 1st2nd |  |-  ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) | 
						
							| 8 | 3 6 7 | sylancr |  |-  ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) | 
						
							| 9 | 5 | simprd |  |-  ( ph -> G e. ( C Func D ) ) | 
						
							| 10 |  | 1st2nd |  |-  ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) | 
						
							| 11 | 3 9 10 | sylancr |  |-  ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) | 
						
							| 12 | 8 11 | oveq12d |  |-  ( ph -> ( F N G ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) | 
						
							| 13 | 2 12 | eleqtrd |  |-  ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |