Step |
Hyp |
Ref |
Expression |
1 |
|
natrcl.1 |
|- N = ( C Nat D ) |
2 |
|
natixp.2 |
|- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
3 |
|
natixp.b |
|- B = ( Base ` C ) |
4 |
|
natixp.j |
|- J = ( Hom ` D ) |
5 |
|
natcl.1 |
|- ( ph -> X e. B ) |
6 |
1 2 3 4
|
natixp |
|- ( ph -> A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) |
7 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
8 |
|
fveq2 |
|- ( x = X -> ( K ` x ) = ( K ` X ) ) |
9 |
7 8
|
oveq12d |
|- ( x = X -> ( ( F ` x ) J ( K ` x ) ) = ( ( F ` X ) J ( K ` X ) ) ) |
10 |
9
|
fvixp |
|- ( ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ X e. B ) -> ( A ` X ) e. ( ( F ` X ) J ( K ` X ) ) ) |
11 |
6 5 10
|
syl2anc |
|- ( ph -> ( A ` X ) e. ( ( F ` X ) J ( K ` X ) ) ) |