| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natrcl.1 |  |-  N = ( C Nat D ) | 
						
							| 2 |  | natixp.2 |  |-  ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) | 
						
							| 3 |  | natixp.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | natixp.j |  |-  J = ( Hom ` D ) | 
						
							| 5 |  | natcl.1 |  |-  ( ph -> X e. B ) | 
						
							| 6 | 1 2 3 4 | natixp |  |-  ( ph -> A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( x = X -> ( F ` x ) = ( F ` X ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = X -> ( K ` x ) = ( K ` X ) ) | 
						
							| 9 | 7 8 | oveq12d |  |-  ( x = X -> ( ( F ` x ) J ( K ` x ) ) = ( ( F ` X ) J ( K ` X ) ) ) | 
						
							| 10 | 9 | fvixp |  |-  ( ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ X e. B ) -> ( A ` X ) e. ( ( F ` X ) J ( K ` X ) ) ) | 
						
							| 11 | 6 5 10 | syl2anc |  |-  ( ph -> ( A ` X ) e. ( ( F ` X ) J ( K ` X ) ) ) |