Description: Reverse closure for a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | natrcl.1 | |- N = ( C Nat D ) |
|
Assertion | natrcl | |- ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natrcl.1 | |- N = ( C Nat D ) |
|
2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
3 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
4 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
5 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
6 | 1 2 3 4 5 | natfval | |- N = ( f e. ( C Func D ) , g e. ( C Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. h e. ( x ( Hom ` C ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
7 | 6 | elmpocl | |- ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |