Step |
Hyp |
Ref |
Expression |
1 |
|
nb3grpr.v |
|- V = ( Vtx ` G ) |
2 |
|
nb3grpr.e |
|- E = ( Edg ` G ) |
3 |
|
nb3grpr.g |
|- ( ph -> G e. USGraph ) |
4 |
|
nb3grpr.t |
|- ( ph -> V = { A , B , C } ) |
5 |
|
nb3grpr.s |
|- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
6 |
|
prid1g |
|- ( B e. Y -> B e. { B , C } ) |
7 |
6
|
3ad2ant2 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> B e. { B , C } ) |
8 |
5 7
|
syl |
|- ( ph -> B e. { B , C } ) |
9 |
8
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> B e. { B , C } ) |
10 |
|
eleq2 |
|- ( { B , C } = ( G NeighbVtx A ) -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
11 |
10
|
eqcoms |
|- ( ( G NeighbVtx A ) = { B , C } -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
13 |
9 12
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> B e. ( G NeighbVtx A ) ) |
14 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( B e. ( G NeighbVtx A ) <-> { B , A } e. E ) ) |
15 |
|
prcom |
|- { B , A } = { A , B } |
16 |
15
|
a1i |
|- ( G e. USGraph -> { B , A } = { A , B } ) |
17 |
16
|
eleq1d |
|- ( G e. USGraph -> ( { B , A } e. E <-> { A , B } e. E ) ) |
18 |
14 17
|
bitrd |
|- ( G e. USGraph -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
19 |
3 18
|
syl |
|- ( ph -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
21 |
13 20
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> { A , B } e. E ) |
22 |
|
prid2g |
|- ( C e. Z -> C e. { B , C } ) |
23 |
22
|
3ad2ant3 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. { B , C } ) |
24 |
5 23
|
syl |
|- ( ph -> C e. { B , C } ) |
25 |
24
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> C e. { B , C } ) |
26 |
|
eleq2 |
|- ( { B , C } = ( G NeighbVtx A ) -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
27 |
26
|
eqcoms |
|- ( ( G NeighbVtx A ) = { B , C } -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
29 |
25 28
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> C e. ( G NeighbVtx A ) ) |
30 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( C e. ( G NeighbVtx A ) <-> { C , A } e. E ) ) |
31 |
|
prcom |
|- { C , A } = { A , C } |
32 |
31
|
a1i |
|- ( G e. USGraph -> { C , A } = { A , C } ) |
33 |
32
|
eleq1d |
|- ( G e. USGraph -> ( { C , A } e. E <-> { A , C } e. E ) ) |
34 |
30 33
|
bitrd |
|- ( G e. USGraph -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
35 |
3 34
|
syl |
|- ( ph -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
37 |
29 36
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> { A , C } e. E ) |
38 |
21 37
|
jca |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( { A , B } e. E /\ { A , C } e. E ) ) |
39 |
1 2
|
nbusgr |
|- ( G e. USGraph -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
40 |
3 39
|
syl |
|- ( ph -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
42 |
|
eleq2 |
|- ( V = { A , B , C } -> ( v e. V <-> v e. { A , B , C } ) ) |
43 |
4 42
|
syl |
|- ( ph -> ( v e. V <-> v e. { A , B , C } ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V <-> v e. { A , B , C } ) ) |
45 |
|
vex |
|- v e. _V |
46 |
45
|
eltp |
|- ( v e. { A , B , C } <-> ( v = A \/ v = B \/ v = C ) ) |
47 |
2
|
usgredgne |
|- ( ( G e. USGraph /\ { A , v } e. E ) -> A =/= v ) |
48 |
|
df-ne |
|- ( A =/= v <-> -. A = v ) |
49 |
|
pm2.24 |
|- ( A = v -> ( -. A = v -> ( v = B \/ v = C ) ) ) |
50 |
49
|
eqcoms |
|- ( v = A -> ( -. A = v -> ( v = B \/ v = C ) ) ) |
51 |
50
|
com12 |
|- ( -. A = v -> ( v = A -> ( v = B \/ v = C ) ) ) |
52 |
48 51
|
sylbi |
|- ( A =/= v -> ( v = A -> ( v = B \/ v = C ) ) ) |
53 |
47 52
|
syl |
|- ( ( G e. USGraph /\ { A , v } e. E ) -> ( v = A -> ( v = B \/ v = C ) ) ) |
54 |
53
|
ex |
|- ( G e. USGraph -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
55 |
3 54
|
syl |
|- ( ph -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
57 |
56
|
com3r |
|- ( v = A -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
58 |
|
orc |
|- ( v = B -> ( v = B \/ v = C ) ) |
59 |
58
|
2a1d |
|- ( v = B -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
60 |
|
olc |
|- ( v = C -> ( v = B \/ v = C ) ) |
61 |
60
|
2a1d |
|- ( v = C -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
62 |
57 59 61
|
3jaoi |
|- ( ( v = A \/ v = B \/ v = C ) -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
63 |
46 62
|
sylbi |
|- ( v e. { A , B , C } -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
64 |
63
|
com12 |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. { A , B , C } -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
65 |
44 64
|
sylbid |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
66 |
65
|
impd |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v e. V /\ { A , v } e. E ) -> ( v = B \/ v = C ) ) ) |
67 |
|
eqid |
|- B = B |
68 |
67
|
3mix2i |
|- ( B = A \/ B = B \/ B = C ) |
69 |
5
|
simp2d |
|- ( ph -> B e. Y ) |
70 |
|
eltpg |
|- ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
71 |
69 70
|
syl |
|- ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
72 |
68 71
|
mpbiri |
|- ( ph -> B e. { A , B , C } ) |
73 |
72
|
adantr |
|- ( ( ph /\ v = B ) -> B e. { A , B , C } ) |
74 |
|
eleq1 |
|- ( v = B -> ( v e. { A , B , C } <-> B e. { A , B , C } ) ) |
75 |
74
|
bicomd |
|- ( v = B -> ( B e. { A , B , C } <-> v e. { A , B , C } ) ) |
76 |
75
|
adantl |
|- ( ( ph /\ v = B ) -> ( B e. { A , B , C } <-> v e. { A , B , C } ) ) |
77 |
73 76
|
mpbid |
|- ( ( ph /\ v = B ) -> v e. { A , B , C } ) |
78 |
42
|
bicomd |
|- ( V = { A , B , C } -> ( v e. { A , B , C } <-> v e. V ) ) |
79 |
4 78
|
syl |
|- ( ph -> ( v e. { A , B , C } <-> v e. V ) ) |
80 |
79
|
adantr |
|- ( ( ph /\ v = B ) -> ( v e. { A , B , C } <-> v e. V ) ) |
81 |
77 80
|
mpbid |
|- ( ( ph /\ v = B ) -> v e. V ) |
82 |
81
|
ex |
|- ( ph -> ( v = B -> v e. V ) ) |
83 |
82
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = B -> v e. V ) ) |
84 |
83
|
impcom |
|- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> v e. V ) |
85 |
|
preq2 |
|- ( B = v -> { A , B } = { A , v } ) |
86 |
85
|
eleq1d |
|- ( B = v -> ( { A , B } e. E <-> { A , v } e. E ) ) |
87 |
86
|
eqcoms |
|- ( v = B -> ( { A , B } e. E <-> { A , v } e. E ) ) |
88 |
87
|
biimpcd |
|- ( { A , B } e. E -> ( v = B -> { A , v } e. E ) ) |
89 |
88
|
ad2antrl |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = B -> { A , v } e. E ) ) |
90 |
89
|
impcom |
|- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> { A , v } e. E ) |
91 |
84 90
|
jca |
|- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> ( v e. V /\ { A , v } e. E ) ) |
92 |
91
|
ex |
|- ( v = B -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
93 |
|
tpid3g |
|- ( C e. Z -> C e. { A , B , C } ) |
94 |
93
|
3ad2ant3 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. { A , B , C } ) |
95 |
5 94
|
syl |
|- ( ph -> C e. { A , B , C } ) |
96 |
95
|
adantr |
|- ( ( ph /\ v = C ) -> C e. { A , B , C } ) |
97 |
|
eleq1 |
|- ( v = C -> ( v e. { A , B , C } <-> C e. { A , B , C } ) ) |
98 |
97
|
bicomd |
|- ( v = C -> ( C e. { A , B , C } <-> v e. { A , B , C } ) ) |
99 |
98
|
adantl |
|- ( ( ph /\ v = C ) -> ( C e. { A , B , C } <-> v e. { A , B , C } ) ) |
100 |
96 99
|
mpbid |
|- ( ( ph /\ v = C ) -> v e. { A , B , C } ) |
101 |
79
|
adantr |
|- ( ( ph /\ v = C ) -> ( v e. { A , B , C } <-> v e. V ) ) |
102 |
100 101
|
mpbid |
|- ( ( ph /\ v = C ) -> v e. V ) |
103 |
102
|
ex |
|- ( ph -> ( v = C -> v e. V ) ) |
104 |
103
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = C -> v e. V ) ) |
105 |
104
|
impcom |
|- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> v e. V ) |
106 |
|
preq2 |
|- ( C = v -> { A , C } = { A , v } ) |
107 |
106
|
eleq1d |
|- ( C = v -> ( { A , C } e. E <-> { A , v } e. E ) ) |
108 |
107
|
eqcoms |
|- ( v = C -> ( { A , C } e. E <-> { A , v } e. E ) ) |
109 |
108
|
biimpcd |
|- ( { A , C } e. E -> ( v = C -> { A , v } e. E ) ) |
110 |
109
|
ad2antll |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = C -> { A , v } e. E ) ) |
111 |
110
|
impcom |
|- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> { A , v } e. E ) |
112 |
105 111
|
jca |
|- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> ( v e. V /\ { A , v } e. E ) ) |
113 |
112
|
ex |
|- ( v = C -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
114 |
92 113
|
jaoi |
|- ( ( v = B \/ v = C ) -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
115 |
114
|
com12 |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v = B \/ v = C ) -> ( v e. V /\ { A , v } e. E ) ) ) |
116 |
66 115
|
impbid |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v e. V /\ { A , v } e. E ) <-> ( v = B \/ v = C ) ) ) |
117 |
116
|
abbidv |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> { v | ( v e. V /\ { A , v } e. E ) } = { v | ( v = B \/ v = C ) } ) |
118 |
|
df-rab |
|- { v e. V | { A , v } e. E } = { v | ( v e. V /\ { A , v } e. E ) } |
119 |
|
dfpr2 |
|- { B , C } = { v | ( v = B \/ v = C ) } |
120 |
117 118 119
|
3eqtr4g |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> { v e. V | { A , v } e. E } = { B , C } ) |
121 |
41 120
|
eqtrd |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( G NeighbVtx A ) = { B , C } ) |
122 |
38 121
|
impbida |
|- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( { A , B } e. E /\ { A , C } e. E ) ) ) |