| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nbcplgr.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								1
							 | 
							cplgruvtxb | 
							 |-  ( G e. ComplGraph -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							ibi | 
							 |-  ( G e. ComplGraph -> ( UnivVtx ` G ) = V )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqcomd | 
							 |-  ( G e. ComplGraph -> V = ( UnivVtx ` G ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq2d | 
							 |-  ( G e. ComplGraph -> ( N e. V <-> N e. ( UnivVtx ` G ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biimpa | 
							 |-  ( ( G e. ComplGraph /\ N e. V ) -> N e. ( UnivVtx ` G ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							uvtxnbgrb | 
							 |-  ( N e. V -> ( N e. ( UnivVtx ` G ) <-> ( G NeighbVtx N ) = ( V \ { N } ) ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							 |-  ( ( G e. ComplGraph /\ N e. V ) -> ( N e. ( UnivVtx ` G ) <-> ( G NeighbVtx N ) = ( V \ { N } ) ) ) | 
						
						
							| 9 | 
							
								6 8
							 | 
							mpbid | 
							 |-  ( ( G e. ComplGraph /\ N e. V ) -> ( G NeighbVtx N ) = ( V \ { N } ) ) |