Metamath Proof Explorer


Theorem nbedgusgr

Description: The number of neighbors of a vertex is the number of edges at the vertex in a simple graph. (Contributed by AV, 27-Dec-2020) (Proof shortened by AV, 5-May-2021)

Ref Expression
Hypotheses nbusgrf1o.v
|- V = ( Vtx ` G )
nbusgrf1o.e
|- E = ( Edg ` G )
Assertion nbedgusgr
|- ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( # ` { e e. E | U e. e } ) )

Proof

Step Hyp Ref Expression
1 nbusgrf1o.v
 |-  V = ( Vtx ` G )
2 nbusgrf1o.e
 |-  E = ( Edg ` G )
3 ovex
 |-  ( G NeighbVtx U ) e. _V
4 1 2 nbusgrf1o
 |-  ( ( G e. USGraph /\ U e. V ) -> E. f f : ( G NeighbVtx U ) -1-1-onto-> { e e. E | U e. e } )
5 hasheqf1oi
 |-  ( ( G NeighbVtx U ) e. _V -> ( E. f f : ( G NeighbVtx U ) -1-1-onto-> { e e. E | U e. e } -> ( # ` ( G NeighbVtx U ) ) = ( # ` { e e. E | U e. e } ) ) )
6 3 4 5 mpsyl
 |-  ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( # ` { e e. E | U e. e } ) )