Metamath Proof Explorer


Theorem nbfal

Description: The negation of a proposition is equivalent to itself being equivalent to F. . (Contributed by Anthony Hart, 14-Aug-2011)

Ref Expression
Assertion nbfal
|- ( -. ph <-> ( ph <-> F. ) )

Proof

Step Hyp Ref Expression
1 fal
 |-  -. F.
2 1 nbn
 |-  ( -. ph <-> ( ph <-> F. ) )