Step |
Hyp |
Ref |
Expression |
1 |
|
hashnbusgrnn0.v |
|- V = ( Vtx ` G ) |
2 |
1
|
fvexi |
|- V e. _V |
3 |
2
|
difexi |
|- ( V \ { U } ) e. _V |
4 |
1
|
nbgrssovtx |
|- ( G NeighbVtx U ) C_ ( V \ { U } ) |
5 |
4
|
a1i |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( G NeighbVtx U ) C_ ( V \ { U } ) ) |
6 |
|
hashss |
|- ( ( ( V \ { U } ) e. _V /\ ( G NeighbVtx U ) C_ ( V \ { U } ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { U } ) ) ) |
7 |
3 5 6
|
sylancr |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { U } ) ) ) |
8 |
1
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> V e. Fin ) |
9 |
|
hashdifsn |
|- ( ( V e. Fin /\ U e. V ) -> ( # ` ( V \ { U } ) ) = ( ( # ` V ) - 1 ) ) |
10 |
9
|
eqcomd |
|- ( ( V e. Fin /\ U e. V ) -> ( ( # ` V ) - 1 ) = ( # ` ( V \ { U } ) ) ) |
11 |
8 10
|
sylan |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` V ) - 1 ) = ( # ` ( V \ { U } ) ) ) |
12 |
7 11
|
breqtrrd |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 1 ) ) |