Step |
Hyp |
Ref |
Expression |
1 |
|
ral0 |
|- A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e |
2 |
|
difeq1 |
|- ( ( Vtx ` G ) = (/) -> ( ( Vtx ` G ) \ { K } ) = ( (/) \ { K } ) ) |
3 |
|
0dif |
|- ( (/) \ { K } ) = (/) |
4 |
2 3
|
eqtrdi |
|- ( ( Vtx ` G ) = (/) -> ( ( Vtx ` G ) \ { K } ) = (/) ) |
5 |
4
|
raleqdv |
|- ( ( Vtx ` G ) = (/) -> ( A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e <-> A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
6 |
1 5
|
mpbiri |
|- ( ( Vtx ` G ) = (/) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
7 |
6
|
nbgr0vtxlem |
|- ( ( Vtx ` G ) = (/) -> ( G NeighbVtx K ) = (/) ) |