Step |
Hyp |
Ref |
Expression |
1 |
|
nbgr0vtxlem.v |
|- ( ph -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
4 |
2 3
|
nbgrval |
|- ( K e. ( Vtx ` G ) -> ( G NeighbVtx K ) = { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } ) |
5 |
4
|
ad2antrl |
|- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> ( G NeighbVtx K ) = { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } ) |
6 |
1
|
ad2antll |
|- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
7 |
|
rabeq0 |
|- ( { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } = (/) <-> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
8 |
6 7
|
sylibr |
|- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } = (/) ) |
9 |
5 8
|
eqtrd |
|- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> ( G NeighbVtx K ) = (/) ) |
10 |
9
|
expcom |
|- ( ( K e. ( Vtx ` G ) /\ ph ) -> ( ( G e. _V /\ K e. _V ) -> ( G NeighbVtx K ) = (/) ) ) |
11 |
10
|
ex |
|- ( K e. ( Vtx ` G ) -> ( ph -> ( ( G e. _V /\ K e. _V ) -> ( G NeighbVtx K ) = (/) ) ) ) |
12 |
11
|
com23 |
|- ( K e. ( Vtx ` G ) -> ( ( G e. _V /\ K e. _V ) -> ( ph -> ( G NeighbVtx K ) = (/) ) ) ) |
13 |
|
df-nel |
|- ( K e/ ( Vtx ` G ) <-> -. K e. ( Vtx ` G ) ) |
14 |
2
|
nbgrnvtx0 |
|- ( K e/ ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
15 |
13 14
|
sylbir |
|- ( -. K e. ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
16 |
15
|
a1d |
|- ( -. K e. ( Vtx ` G ) -> ( ph -> ( G NeighbVtx K ) = (/) ) ) |
17 |
|
nbgrprc0 |
|- ( -. ( G e. _V /\ K e. _V ) -> ( G NeighbVtx K ) = (/) ) |
18 |
17
|
a1d |
|- ( -. ( G e. _V /\ K e. _V ) -> ( ph -> ( G NeighbVtx K ) = (/) ) ) |
19 |
12 16 18
|
pm2.61nii |
|- ( ph -> ( G NeighbVtx K ) = (/) ) |