| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nbgrcl.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | df-nbgr |  |-  NeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { v } ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) | 
						
							| 3 | 2 | mpoxeldm |  |-  ( N e. ( G NeighbVtx X ) -> ( G e. _V /\ X e. [_ G / g ]_ ( Vtx ` g ) ) ) | 
						
							| 4 |  | csbfv |  |-  [_ G / g ]_ ( Vtx ` g ) = ( Vtx ` G ) | 
						
							| 5 | 4 1 | eqtr4i |  |-  [_ G / g ]_ ( Vtx ` g ) = V | 
						
							| 6 | 5 | eleq2i |  |-  ( X e. [_ G / g ]_ ( Vtx ` g ) <-> X e. V ) | 
						
							| 7 | 6 | biimpi |  |-  ( X e. [_ G / g ]_ ( Vtx ` g ) -> X e. V ) | 
						
							| 8 | 3 7 | simpl2im |  |-  ( N e. ( G NeighbVtx X ) -> X e. V ) |