Description: Every neighbor N of a vertex K is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrisvtx.v | |- V = ( Vtx ` G ) | |
| Assertion | nbgrisvtx | |- ( N e. ( G NeighbVtx K ) -> N e. V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nbgrisvtx.v | |- V = ( Vtx ` G ) | |
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) | |
| 3 | 1 2 | nbgrel |  |-  ( N e. ( G NeighbVtx K ) <-> ( ( N e. V /\ K e. V ) /\ N =/= K /\ E. e e. ( Edg ` G ) { K , N } C_ e ) ) | 
| 4 | simp1l |  |-  ( ( ( N e. V /\ K e. V ) /\ N =/= K /\ E. e e. ( Edg ` G ) { K , N } C_ e ) -> N e. V ) | |
| 5 | 3 4 | sylbi | |- ( N e. ( G NeighbVtx K ) -> N e. V ) |