Step |
Hyp |
Ref |
Expression |
1 |
|
nbgrssovtx.v |
|- V = ( Vtx ` G ) |
2 |
1
|
nbgrisvtx |
|- ( v e. ( G NeighbVtx X ) -> v e. V ) |
3 |
|
nbgrnself2 |
|- X e/ ( G NeighbVtx X ) |
4 |
|
df-nel |
|- ( v e/ ( G NeighbVtx X ) <-> -. v e. ( G NeighbVtx X ) ) |
5 |
|
neleq1 |
|- ( v = X -> ( v e/ ( G NeighbVtx X ) <-> X e/ ( G NeighbVtx X ) ) ) |
6 |
4 5
|
bitr3id |
|- ( v = X -> ( -. v e. ( G NeighbVtx X ) <-> X e/ ( G NeighbVtx X ) ) ) |
7 |
3 6
|
mpbiri |
|- ( v = X -> -. v e. ( G NeighbVtx X ) ) |
8 |
7
|
necon2ai |
|- ( v e. ( G NeighbVtx X ) -> v =/= X ) |
9 |
|
eldifsn |
|- ( v e. ( V \ { X } ) <-> ( v e. V /\ v =/= X ) ) |
10 |
2 8 9
|
sylanbrc |
|- ( v e. ( G NeighbVtx X ) -> v e. ( V \ { X } ) ) |
11 |
10
|
ssriv |
|- ( G NeighbVtx X ) C_ ( V \ { X } ) |